传感器产品FAQ

传感器产品FAQ

传感器产品常见问题
传感器选型

传感器选型

咨询电话:17764509575(VX)

气体传感器分类

回复

匿名用户 发起了问题 • 1 人关注 • 0 个回复 • 227 次浏览 • 2024-01-15 10:38 • 来自相关话题

气体传感器有哪些品牌?

回复

匿名用户 发起了问题 • 1 人关注 • 0 个回复 • 247 次浏览 • 2024-01-15 10:23 • 来自相关话题

5 INCH-D-4V的噪声是不是很大?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 267 次浏览 • 2024-01-13 10:02 • 来自相关话题

RM3100测试过程中的波动,是噪声还是干扰问题?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 280 次浏览 • 2024-01-13 09:53 • 来自相关话题

通过压力传感器测管道流量的公式

回复

laoguo 回复了问题 • 1 人关注 • 2 个回复 • 1120 次浏览 • 2024-01-04 16:36 • 来自相关话题

单片机ADC采样常用的十大滤波算法

laoguo 发表了文章 • 0 个评论 • 2153 次浏览 • 2022-11-16 09:16 • 来自相关话题

假定从 8 位 ADC 中读取数据(如果是更高位的 ADC 可定义数据类型为 int) ,子程序为get_ad();一.限幅滤波法(又称程序判断滤波法)A.方法: ...查看全部

假定从 8 位 ADC 中读取数据(如果是更高位的 ADC 可定义数据类型为 int) ,子程序为get_ad();


一.限幅滤波法(又称程序判断滤波法)

A.方法:

根据经验判断,确定两次采样允许的最大偏差值(设为 A)

每次检测到新值时判断:

如果本次值与上次值之差<=A,则本次值有效

如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次数值


B.优点

能有效克服因偶然因素引起的脉冲干扰


C.缺点

无法抑制那种周期性的干扰

平滑度差


D.示例

#define A 10

char value;

char filter()

{

char new_value;

new_value = get_ad();

if (( new_value - value > A ) || ( value - new_value > A )

return value;

return new_value;

}

二.中位值滤波法

A.方法:

连续采样 N 次(N 取奇数)

把 N 次采样值按大小排列

取中间值为本次有效值


B.优点:

能有效克服因偶然因素引起的波动干扰

对温度、液位的变化缓慢的被测参数有良好的滤波效果


C.缺点:

对流量、速度等快速变化的参数不宜


D.示例

/* N 值可根据实际情况调整排序采用冒泡法*/ 

#define N 11

char filter()

{

char value_buf[N];

char count,i,j,temp;

for ( count = 0; count < N; count++)

{

value_buf[count] = get_ad();

delay();

}

for (j = 0; j < N-1; j++)

{

for (i = 0; i < N - j; i++)

{

if ( value_buf > value_buf[i + 1] )

{

temp = value_buf;

value_buf = value_buf[i + 1];

value_buf[i + 1] = temp;

}

}

}

return value_buf[(N-1)/2];

}


三.算数平均滤波法

A.方法:

连续取 N 个采样值进行算术平均运算

N 值较大时:信号平滑度较高,但灵敏度较低

N 值较小时:信号平滑度较低,但灵敏度较高

N 值的选取:一般流量, N=12;压力: N=4


B.优点:

适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动


C.缺点:

对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费 RAM


D.示例

#define N 12

char filter()

{

int sum = 0;

for ( count=0;count<N;count++)

{

sum + = get_ad();

delay();

}

return (char)(sum/N);

}


四.递推平均滤波法(又称滑动平均滤波法)

A.方法:

把连续取 N 个采样值看成一个队列

队列的长度固定为 N

每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)

把队列中的 N 个数据进行算术平均运算,就可获得新的滤波结果

N 值的选取:流量, N=12;压力: N=4;液面, N=4~12;温度, N=1~4


B.优点:

对周期性干扰有良好的抑制作用,平滑度高

适用于高频振荡的系统


C.缺点:

灵敏度低

对偶然出现的脉冲性干扰的抑制作用较差

不易消除由于脉冲干扰所引起的采样值偏差

不适用于脉冲干扰比较严重的场合

比较浪费 RAM


D.示例

char value_buff[N];

char i=0;

char filter()

{

char count;

int sum=0;

value_buff[i++]=get_data();

if(i==N)

i=0;

for(count=0;count<N;count++)

sum+=value_buff[count];

return (char)(sum/N);

}


五.中位值平均滤波法(又称防脉冲干扰平均滤波法)

A.方法:

相当于“中位值滤波法”+“算术平均滤波法”

连续采样 N 个数据,去掉一个最大值和一个最小值

然后计算 N-2 个数据的算术平均值

N 值的选取: 3~14


B.优点:

融合了两种滤波法的优点

对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差


C.缺点:

测量速度较慢,和算术平均滤波法一样

比较浪费 RAM


D.示例

#define N 12

char filter()

{

char count,i,j;

char value_buf[N];

int sum=0;

for (count=0;count<N;count++)

{

value_buf[count] = get_ad();

delay();

}

for (j=0;j<N-1;j++)

{

for (i=0;i<N-j;i++)

{

if ( value_buf>value_buf[i+1] )

{

temp = value_buf;

value_buf = value_buf[i+1];

value_buf[i+1] = temp;

}

}

}

for(count=1;count<N-1;count++)

sum += value[count];

return (char)(sum/(N-2));

}



六.限幅平均滤波法

A.方法:

相当于“限幅滤波法”+“递推平均滤波法”

每次采样到的新数据先进行限幅处理,

再送入队列进行递推平均滤波处理


B.优点:

融合了两种滤波法的优点

对于偶然出现的脉冲性干扰, 可消除由于脉冲干扰所引起的采样值偏差


C.缺点:

比较浪费 RAM


D.示例

略 参考子程序 1、 3


七.一阶滞后滤波法

A.方法:

取 a=0~1

本次滤波结果=(1-a) 本次采样值+a上次滤波结果


B.优点:

对周期性干扰具有良好的抑制作用

适用于波动频率较高的场合


C.缺点:

相位滞后,灵敏度低

滞后程度取决于 a 值大小

不能消除滤波频率高于采样频率的 1/2 的干扰信号


D.示例

/* 为加快程序处理速度假定基数为 100, a=0~100 */

#define a 50

char value;

char filter()

{

char new_value;

new_value = get_ad();

return (100-a)*value + a*new_value;

}


八.加权递推平均滤波法

A.方法:

是对递推平均滤波法的改进,即不同时刻的数据加以不同的权

通常是,越接近现时刻的数据,权取得越大。

给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低


B.优点:

适用于有较大纯滞后时间常数的对象

和采样周期较短的系统


C.缺点:

对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号

不能迅速反应系统当前所受干扰的严重程度,滤波效果差


D.示例

/* coe 数组为加权系数表,存在程序存储区。 */

#define N 12

char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};

char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;

char filter()

{

char count;

char value_buf[N];

int sum=0;

for (count=0,count<N;count++)

{

value_buf[count] = get_ad();

delay();

}

for (count=0,count<N;count++)

sum += value_buf[count]*coe[count];

return (char)(sum/sum_coe);

}



九.消抖滤波法

A.方法:

设置一个滤波计数器

将每次采样值与当前有效值比较:

如果采样值=当前有效值,则计数器清零

如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限 N(溢出)

如果计数器溢出,则将本次值替换当前有效值,并清计数器


B.优点:

对于变化缓慢的被测参数有较好的滤波效果,

可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动


C.缺点:

对于快速变化的参数不宜

如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。


D.示例

#define N 12

char filter()

{

char count=0;

char new_value;

new_value = get_ad();

while (value !=new_value);

{

count++;

if (count>=N) 

return new_value;

delay();

new_value = get_ad();

}

return value;

}



十.限幅消抖滤波法

A.方法:

相当于“限幅滤波法”+“消抖滤波法”

先限幅,后消抖


B.优点:

继承了“限幅”和“消抖”的优点

改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统


C.缺点:

对于快速变化的参数不宜


D.示例

参考 1、 9

————————————————

原文链接:https://blog.csdn.net/u011852186/article/details/126484032


关于一款All sensor 的压力传感器ELVH的引脚定义问题

laoguo 回复了问题 • 1 人关注 • 2 个回复 • 1082 次浏览 • 2022-10-15 18:08 • 来自相关话题

双极霍尔元件原理

laoguo 发表了文章 • 0 个评论 • 855 次浏览 • 2022-09-21 07:47 • 来自相关话题

双极霍尔需要两个磁极分别控制高低电平,利用磁场NS极交替来输出信号。如S极靠近时输出低电平,N极靠近时输出高电平。如果磁场被移除,则是随机输出,有可能是打开,也有可能是关闭。

hall.jpeg

双极霍尔有一种特殊形式叫锁存霍尔或锁定霍尔:如S极靠近时开启,磁场离开继续保持开启;当靠近N极时才会关闭,磁场移除后继续保持关闭状态,直到下次磁场改变,这种保持上次状态的特性即锁存特性,这种类型的霍尔就是双极锁存型霍尔.

双极性霍尔传感器设计为灵敏开关。双极型开关有一致的迟滞性,但是,不同的器件对发生在正极或者负极的开关点的范围是不同的。因为需要改变磁场的极性,来确保开关点的切换,并且需要一致的迟滞性来确保周期,所以需要磁信号改变幅度ΔB,故而这些器件紧密排列,南北两极交替使用。

双极霍尔一向使用于电机换相或者计圈数应用场景!最常见的是霍尼韦尔的SS41F,应用于电动自行车轮毂电机上。

大家好啊世界您好啊请多关照哈

回复

chenchen 发起了问题 • 1 人关注 • 0 个回复 • 1012 次浏览 • 2022-09-19 17:38 • 来自相关话题

大家好啊,新手一枚,请多关照哈

回复

chenchen 发起了问题 • 1 人关注 • 0 个回复 • 1019 次浏览 • 2022-09-19 17:37 • 来自相关话题

SMI的SM7331-BCE-S-001-001,SM7331-BCE-S-001-000,这两个有什么差别?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 969 次浏览 • 2022-08-25 16:41 • 来自相关话题

dlvr,dlhr,dllr差压传感器的区别

回复

laoguo 发起了问题 • 1 人关注 • 0 个回复 • 1111 次浏览 • 2022-07-27 16:58 • 来自相关话题

PSI, PSIG与PSIA的区别

回复

匿名用户 发起了问题 • 1 人关注 • 0 个回复 • 2194 次浏览 • 2022-03-31 11:35 • 来自相关话题

电化学气体传感器驱动电路设计

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 1247 次浏览 • 2022-02-12 10:24 • 来自相关话题

MEMS陀螺仪对振动的敏感度

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 1438 次浏览 • 2022-02-10 12:26 • 来自相关话题