传感器产品FAQ

传感器产品FAQ

传感器产品常见问题
传感器选型

传感器选型

咨询电话:17764509575(VX)

基于IMU和地磁传感器的捷联惯性导航系统(1)

laoguo 发表了文章 • 0 个评论 • 1452 次浏览 • 2021-07-16 11:05 • 来自相关话题

简介

随着服务机器人市场和技术的发展,导航已成为研究和应用中的一个热点。与车辆、船舶或飞机相比,服务机器人体积小,成本低,因此它们的导航系统应该具有捷联和低成本的特点。传统的稳定平台导航系统通常要采用独立的加速度计和光纤或激光陀螺仪,所有传感器都机械且刚性地安装在与正在移动的车辆隔离的稳定平台上。这导致了尺寸大、可靠性差、成本高的缺点。相反,在捷联惯导系统中,惯性传感器直接固定在车辆本体上,这意味着传感器会与车辆一起旋转。这种捷联方法消除了稳定平台惯导的缺点。然而,平台惯导的准确性通常高于SINS。平台惯导往往可以达到战略级(0.0001°/时的陀螺仪偏置,1μg的加速器偏置)或军用级(0.005°/时的陀螺仪偏置,30μg的加速器偏置),而多数SINS只能到达导航级(0.01°/时的陀螺仪偏置,50μg的加速器偏置)或战术级(10°/时的陀螺仪偏置,1mg的加速器偏置)。对于大多数服务机器人或AGV导航应用,这一精度足够了。

导航方法很多,包括机器视觉、GPS、UWB、SLAM型激光雷达等。基于IMU的惯性导航始终是导航的重要组成部分。然而,由于这种传感器的限制——例如偏置误差、轴间误差、噪声,特别是零偏不稳定性——惯性导航通常需要采用一个伙伴传感器,定期为它提供参考或校准,本文将这种情况称为传感器融合。许多传感器都可以与IMU融合,例如摄像头和里程表,但在这些传感器中,地磁传感器是一种低成本的方案,可与IMU配合获得姿态信息。

在本文中,我们使用ADI的IMU ADIS16470和地磁传感器来开发平台和算法,实现捷联惯性导航系统。但是,地磁传感器只能提供姿态信息。对于航位推算或距离测量,我们只能使用IMU中的 加速度传感器。

ADIS16470 IMU简介

ADI公司的ADIS16470是一款微型MEMS IMU,集成了3轴陀螺仪和3轴加速度计。其陀螺仪零偏稳定性为8°/时,加速计零偏稳定性为13μg 其关键参数都经过出厂校准。此外,ADIS16470的 低价格在同级产品中具有吸引力,得到了许多客户的广泛使用。在本文中,我们使用微控制器与ADIS16470通过SPI接口进行通信。

地磁传感器介绍

地磁传感器是用于测量罗盘体坐标(即坐标系)中的地磁场的传感器,可为航向提供绝对参考。其x、y和z分量值由本地地磁场投影而来。这种传感器有两个主要缺点——一是精度和分辨 率不高——例如,常用的霍尼韦尔罗盘传感器HMC5883L的分辨率仅为12位。另一个缺点是传感器容易受到周围环境的干扰,因为地磁场非常弱,强度范围为毫高斯到8高斯。

尽管有这些缺点,仍然可以在许多情况下使用,例如户外、低EMI环境等。将地磁传感器与IMU进行松耦合,就可以在大多数环境中使用这类传感器。

在本文中,我们使用PNI传感器公司的高性能电子罗盘传感器RM3100,它提供了24位分辨率。PNI使用主动激励法来提高抗噪声能力。

罗盘传感器的校准

在使用罗盘传感器之前,需要对其进行校准以消除两个主要误差。一个是失调误差,这原本是由传感器和电路的失调误差引起的。另一个是标度误差。这两种误差都容易受到周围磁环境的干扰。例如,如果有一个x轴向的外部磁场施加到传感器上,就会给出外部x轴失调误差。同时,x轴标度也将与y轴和z轴不同。

通常用于校准磁传感器的方法是在xy平面上转动传感器绕圈,然后抽取数据。一个地点的地磁场强度是一个常数值,因此绘制的数据应该是一个圆;然而,事实上,我们将看到一个椭圆形,这意味着我们需要移动椭圆并重新缩放到以零为中心的圆。

上述2D校准方法有一些缺点,并且需要用加速器来测量其倾斜度。我们使用3D球面拟合方法来校准罗盘传感器。首先,我们需要将传感器旋转到x-y-z空间中的每个方向,并在3D坐标中绘制其值。然后我们需要使用最小平方误差(MSE)方法将数据拟合为椭球面。

椭球方程可以表示为

Equation 1

其中,X、Y和Z是罗盘输出在三个方向上的地磁分量。将这些值拟合为椭球面意味着,我们需要得到一组最优系数解。我们将系数定义为:

Text Equation 1

在拟合时,我们定义向量:

Text Equation 2

所以我们需要计算最优σ,并使用公式2来找出最小值:

Equation 2

这样我们就可以得到图1所示的拟合结果。

234033-fig-01


图1. 原始罗盘数据分布(左)和使用椭球拟合后的罗盘数据(右)。

为了校准传感器,我们需要拉伸或压缩拟合的椭球面并将其移至以零为中心的球面上。我们使用矩阵奇异值分解(SVD)方法来进行这种校准。校准后的球体如图2所示。1,2

234033-fig-02


图2. 用SVD方法进行球体校准后的罗盘数据。

校准后,我们可以看到,测得的磁场强度(球半径)几乎恒定不变,如图3所示。

234033-fig-03


图3. 校准前和校准后的磁场比较。

使用ADIS16470和罗盘的姿态和航向参考系统

AHRS由三个轴上的传感器组成,提供姿态信息,包括横滚角、俯仰角和偏航角。AHRS是一个来自飞机导航的概念。我们用它来描述方向,即姿态。

在介绍我们的方法之前,有必要首先解释为什么确定姿态需要进行融合。事实上,我们的系统现在有三种传感器:陀螺仪、加速器和罗盘(地磁传感器)。

陀螺仪提供围绕各轴的旋转角速度。通过角速率积分计算,我们可以得到旋转角度。如果我们知道初始航向,通过角度就始终能够得到航向姿态。积分将累积陀螺仪的不稳定零偏,这将导致角度误差。此外,来自陀螺仪的高斯分布噪声将积分成一个布朗运动过程,并导致随机游走误差。因此,我们很难长时 间使用陀螺仪,陀螺仪需要定期校准。

加速度计提供每个轴方向的移动加速度。在静态状态下,我们可以得到每个轴与重力加速度之间的角度。由于重力加速度在方向和值上恒定不变,我们可以获得相对于重力方向的航向姿态。然而,该方法使用重力加速度作为参考,因此不能解出围绕重力加速度旋转的角度。

罗盘提供从地磁场投影的每个轴的值。我们可以从每个轴与恒为常数向量的地磁场方向之间的关系推导出角度值。如前一节所述,由于对外部磁场的抗扰性较差,罗盘需要一个低干扰的环境。

从这一解释中,我们可以看到,很难靠一个传感器来找到姿态,我们需要组合使用两个或三个传感器并把信息融合起来。本文用加速度计、陀螺仪和地磁罗盘查找姿态。这种融合也被称为磁、角速率和重力(MARG)系统。

扩展卡尔曼滤波器的设计与传感器融合

有多种方法可以将IMU和罗盘数据融合起来,例如互补滤波器、统计学ARMA滤波器,卡尔曼滤波器等。我们在本文中使用的是扩展卡尔曼滤波器。

首先,我们需要介绍本文中使用的一些定义。

坐标定义

T航向或方向是两个坐标(即坐标系)之间的关系。一个坐标总在变化,另一个坐标保持不变。对于坐标定义方法,我们使用导航坐标和体坐标。与东北地(NED)坐标系或地理方法相反,我们将测量的初始体坐标值定义为导航坐标系,此后该坐标为恒定坐标。从体坐标到导航坐标的映射(投影)矩阵定义为

Text Equation 3

姿态定义

与欧拉角或方向余弦矩阵(DCM)不同,我们在这里使用四元数,定义为

Text Equation 4

常用于导航以避免奇异性。

用卡尔曼滤波器更新姿态

我们在本文中使用的运动学方程(即状态转移方程)是非线性微分方程,因此需要使用一个EKF,用于对该微分方程进行一阶近似。对于EKF设计,我们定义

Text Equation 5

一个1×7向量作为状态变量,其中

Text Equation 6

为角速率;

Text Equation 7

为姿态四元数。

Text Equation 8

一个1×7向量作为观测变量,与状态变量具有相同的分量。

Text Equation 9

一个7×7矩阵作为状态转移矩阵,其中,A的第一部分是角速率的数字化微分方程,第二部分是数字化四元数更新方程,后者从运动学方程推导而来。

Text Equation 10

一个7×7矩阵作为观察矩阵。

Text Equation 11

为误差协方差矩阵,这是一个7×7矩阵,其中e估计向量 真实值xx之间的误差我们在测试中将初始误差设为相对较小的值。该值会自动收敛到一个小值。

R,Q被设为状态转移噪声和观测噪声的协方差矩阵。我们得到它们的初始值,

R0和Q0在保持IMU和罗盘处于静止状态的同时,通过测量陀螺仪和加速器的交流均方根值的平方得到。我们设

R0 = Q0

根据以上定义,卡尔曼滤波器将通过以下五个步骤完成:

步骤1:使用公式3计算卡尔曼增益K

Equation 3

步骤2:计算误差协方差矩阵,P:

Equation 4

步骤3:输出估算状态:

Equation 5

步骤4:更新状态:

Equation 6

步骤5:更新误差协方差矩阵P:

Equation 7

该过程可以简单地描述为图4中的框图。

234033-fig-04


图4. 用于更新姿态的卡尔曼滤波器流程图。


篇幅有限,可下载PDF原文阅读 

基于IMU和地磁传感器的捷联惯性导航系统_cn.pdf


磁力计 / 磁传感器 / 罗盘品牌列表

laoguo 发表了文章 • 0 个评论 • 1559 次浏览 • 2020-06-10 19:57 • 来自相关话题

中国-矽睿科技(QST)三轴地磁传感器:QMC6310,QMC5883L,QMC783,QMC6983


    无锡美新(MEMSIC)
    明皜传感(MiraMEMS)
    江苏多维(dowaytech)
    旭化成微电子(AKM Semiconductor)
    Allegro
    Micronas
    Melexis
    爱知制钢(Aichi Steel)
    雅马哈(Yamaha)
    阿尔卑斯电气有限公司(Alps Electric)
    意法半导体(ST Microelectronics)
    Amotech
    飞思卡尔(Freescale)
    霍尼韦尔(Honeywell)
    松下(Panasonic)
    精量电子(Measurement Specialties)
    英飞凌(infineon)
    Baolab
    mCube


美国-PNI公司:

地磁传感器套件RM3100(包括专用驱动芯片13156,Sen-XY轴地磁传感器13104,Sen-Z Z轴传感器13101)


台湾-爱盛科技(isentek): http://www.isentek.com/

三轴AMR地磁传感器

        消费级产品线:IST8305,IST8306,IST8315

        工业级产品线:IST8307,IST8308,IST8310,IST8308A

AMR电流传感器:IST8110,ICSM1000(模块)

角度传感器:IST8210(180度)