精度

精度

振动状态监测一般关注哪些关键参数?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 65 次浏览 • 2021-08-05 11:43 • 来自相关话题

SCA3300-D01精度有多高?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 82 次浏览 • 2021-07-07 17:26 • 来自相关话题

总精度/总误差带(Total accuracy / Total error band)

回复

laoguo 发起了问题 • 1 人关注 • 0 个回复 • 75 次浏览 • 2021-07-07 16:25 • 来自相关话题

压力传感器常用术语

laoguo 发表了文章 • 0 个评论 • 44 次浏览 • 2021-07-07 15:47 • 来自相关话题

下面是压力传感器选型时常用的术语:


标准压:以大气压为标准表示的压力大小,大于大气压的叫正压;小于大气压的叫负压。


绝对压:以绝对真空为标准表示的压力大小。


相对压:对比较对象(标准压)而言的压力大小。


大气压:指大气压力。标准大气压(1atm)相当于高度为760mm水银柱的压力。


真空:指低于大气压的压力状态。1Torr=1/760气压(atm)。

1511747511776048000.png

检测压力范围:指传感器的适应压力范围。


可承受压力:当恢复到检测压力时,其性能不下降的可承受压力。


往返精度(ON/OFF输出):当一定温度(23°C)下,当增加、减少压力时、用检测压力的全标度值去除输出进行反转的压力值而得到的动作点的压力变动值。

1511747526428077757.png


精度:在一定温度(23°C)下,当加零压力和额定压力时,用全标度值去除偏离输出电流规定值(4mA、20mA)的值而得到的值。单位用%FS表示。


线性:模拟输出对检测压力呈线性变化,但与理想直线相比有偏差。用对全标度值来说百分数来表示这种偏差的值叫线性。


磁滞(线性):用零电压和额定电压在输出电流(或电压)值间画出理想直线,把电流(或电压)值与理想电流(或电压)值之差作为误差求出来,再求出压力上升时和下降时的误差值。用全标度的电流(或电压)值去除上述差的绝对值的最大值所得的值即为磁滞。单位用%FS表示。


磁滞(ON/OFF输出):用压力的全标度值去除输出ON点压力与OFF点压力之差所得的值既是磁滞。

非腐蚀性气体:指空气中含有的物质(氮、二氧化碳等)与惰性气体(氩、氖等)


如何用加速度计提高倾角测量精度

laoguo 发表了文章 • 0 个评论 • 49 次浏览 • 2021-07-02 11:30 • 来自相关话题

本文旨在探讨如何用组合器件一类的加速度计提高倾角测量的精度。在乘用车上,电动驻车制动器(EPB)被用于使汽车在平坦的分级道路上保持静止。这是通过用一个单轴或双轴加速度计测量倾角来实现的。一般做法是将一个X轴/Y轴或Z轴低g加速度计装在EPB控制单元中一个专门的模块中。现在,越来越多的汽车配有ESC(电子稳定控制)功能,在单个芯片中集成了组合式低g加速度计和陀螺仪。这样做是为了防止汽车侧滑和翻车;如今,ESC功能已经成为世界各国或地区法律的强制要求。如果通过组合器件(单芯片、组合式加速度计和陀螺仪)实现倾角测量,则不必在车上安装一个独立的EPB模块,结果可以大幅降低汽车的成本。由于组合器件通常用于ESC,所以并未针对倾角检测优化,并且通过组合器件测量倾角时,测量精度有时无法达到要求。由于组合器件是XY轴或XYZ轴,所以通常用X轴进行倾角测量,EPB模块中的部分传统型低-g加速度计使用的是Z轴,因为它是垂直安装在发动机舱里的。检测轴应该与重力垂直,才能取得更高的精度——我们稍后会讨论这一点。

对于汽车中的倾角测量,评估精度是非常重要的。不妨想像,您的车停在绝对平坦的地面,因此,加速度计计算的倾角应该是0°。如果您的车停在斜坡上,就应该精确地检测出倾角,以便正确地激活刹车系统。

因此

其中:

AOUT 为加速度计的输出,单位为g

θ 为斜坡的倾角,单位为度。


由于sin θ是一个非线性函数,所以,AOUT与θ之间的关系是非线性 的,在接近零时其线性度处于最佳状态,即其此时具有最佳的测量精度。随着θ的增大,测量精度下降。这正是检测轴应与重力垂直的原因,因为道路坡度将接近零

对于汽车倾角测量,不必在全斜坡坡度的条件下考虑系统。现实世界中,道路上的绝大多数斜坡坡度不会超过30°。我们只需要分析在±30°的范围内分析贡献因素的精度即可。

影响系统级测量精度的贡献因素有多个:

  • 灵敏度误差和初始绝对失调

  • 非线性度

  • 与初始绝对失调的总失调变化

  • 噪声

灵敏度误差和初始绝对失调

灵敏度误差

灵敏度是对输入-输出测得的传递函数的斜率,通常为+1g和–1g。灵敏度误差为器件间的灵敏度偏差。例如,有些加速度计的最大灵敏度为3%。

初始绝对失调

范围内的失调约为25°C;例如,在模块制造完成后立即测量的值为25°C ± 5°C。初始绝对失调表示大量器件的实测偏移值的标准差。

两点校准

对于倾角测量应用,两个主要的误差来自失调误差和灵敏度误差。这两种误差会导致不可接受的检测结果,因此不得忽略。如果我们希望消除这些部分误差,则应对加速度输出进行校准。一般地,要对倾角测量的失调和灵敏度进行一次校准。若要考虑失调和灵敏度误差,则加速度计输入与输出的关系为:

其中:

A输出 为失调误差,单位为g
增益为加速度计的增益,理想值为1。
A实际为施加于加速度计的实际加速度,单位为g。

有两种基本校准技术;其中一种是单点校准。这种校准的具体做法是在加速度计上施加一个0g场,然后测量输出。这类校准只能用于校准失调误差,不能校准增益误差。然后,从实际输出值中减去0g场里的输出结果,消除失调误差。这种校准方法非常简单,但精度不足,因为仍然存在灵敏度误差。另一种方法是1g翻转校准,在+1g和–1g时采用两点校准,并在每个+1g和–1g场内按照以下公式测量加速度输出:

其中,失调A失调的单位为g

以这两点信息为基础,可以按照以下方法解出失调和增益:

其中,+1g和 1g测量值、A+1g和A–1g均以g为单位。

经过这一次校准以后,可以用该等式计算实际加速度,每次都会消除失调误差和灵敏度误差。

其中,A失调和A输出以g为单位。

非线性度

器件的非线性度为测得加速度(AMEA)与理想线性输出加速度(AFIT)之间的最大偏差。加速度测量数据集应包括加速度计的满量程范围。其测量方式为Max(|AMEA – AFIT|)。

其中:
AMEA为给定gn下的测得加速度。
AFIT 为给定gn下的预测加速度。

多数加速度计或组合器件在给定输入加速度计范围内均存在非线性——例如,30 mg ± 2g的范围。对于倾角测量应用,输入坡道斜率在±30°以内,这意味着输出加速度范围在±500 mg (±1g× sin 30°)以内,所以应重新评估该范围内的非线性度。由于非线性度在整个输入范围内是非线性的,所以,很难准确地量化评估这部分误差。然而,由于该器件的数据手册通常都很保守,线性度为30 mg,输入范围为±2g,用10 mg计算±500 mg范围内的误差更合理些。

与初始绝对失调的总失调变化

与初始绝对失调的总失调变化为温度、应力和老化效应导致的失调的最大偏差。该偏差是相对于给定器件的初始绝对失调进行测量的。这是精度总误差的主要贡献因素。

在温度、应力、老化等所有这些因素中,变化与温度在总失调变化中占比很大。一般地,变化与温度曲线是二阶曲线,通常为旋转抛物线。为了消除这部分误差,可以在系统级执行三点校准。对于给定器件,可按下列步骤校准输出失调随温度的变化值。

第1步:

使器件的输出响应以某个 ∆N0值偏移。温度校准流程的第一步是 消除环境温度下的失调。

第2步:

接下来,在高温下测试器件,用获得的新信息生成失调校正线性公式。

第3步:

给现有公式添加一个二阶分量,校正失调剩余部分。设二阶曲线遵循以下公式:

这是二阶抛物线公式,已经通过第1步和第2步消除了旋转分量。

在该公式中,该二阶抛物线有三个解:



然后,我们可以得到温度系数 a, b, c.

有关∆N0∆N1∆N2a, b, c 的所有温度系数信息应该存储在系统非易失性存储器中,同时需要一个板载温度传感器。系统会在每次上电后例行校准加速度计,确保消除失调随温度的变化值。

噪声

基于单个数据样本测量倾角不一定可靠。即使加速度计的噪声为零,倾角测量也是在汽车启动时测量的,所以,需要减小发动机、过往车辆或乘客在车上来回移动导致的任何振动。最好的办法是在不降至最低数据速率要求的条件下,在尽量长的时间内做数据平均。数据平均算法会减少rms噪声。

假如我们对噪声采样,结果可得到每个样本的方差

求一个随机变量的均值,获得以下方差,

由于噪声方差保持于σ2不变,

以上推导显示,对同一未校正噪声的n次实现求均值可使噪声功率减少n倍,并使rms噪声减少√n。

由于随机噪声受高斯分布影响,所以,rms噪声等于高斯分布的标准差。6σ以内的最小分布为97%。

例如,如果以1 kSPS的采样率对每100 ms的数据求均值,则最大rms噪声 = 0.4 mg,即是说如果以6σ作为与平均值的距离,则此时的峰值噪声仅为2.4 mg

用于与rms值相乘的因数取决于器件要执行的任务的统计需求。例如,如果选择6作为因数(峰峰值噪声为6 × RMS_Noise),则算法在器件生命周期内要运行的次数会影响超过最差情况6 × RMS_Noise 的概率。可总结如下:

E为在生命周期内超过最差情况的预期次数,M为生命周期内的运行次数,r为超过最差情况的概率。基于此,我们可以通过乘以rms噪声评估出一个合理的因数。

小结

以ADI公司的ADXC1500/ADXC1501(组合式陀螺仪和2轴/3轴加速度 计)为例,所有误差贡献项均列于表1中,包括校准和不校准两种情况。我们可以假设,总失调变化为二次曲线,并且其在温度范围内的变化占总失调变化的80%。另外,以6为因数乘以最大rms噪声。

一个陀螺仪和一个三轴加速度计的单芯片集成方案可以实现多种新型应用,尤其是在汽车安全系统和工业自动化应用领域。为了设计更加可靠、高精度的汽车安全系统,例如,稳定的电子控制系统(ESC)和侧翻检测系统,尽量减少系统误差至关重要。汽车中已安装这些传统型底盘控制系统,包括防抱死制动系统、牵引控制和偏航控制系统。


压力传感器技术规格的准确度解释

回复

匿名用户 发起了问题 • 1 人关注 • 0 个回复 • 125 次浏览 • 2021-05-29 09:44 • 来自相关话题

传感器干扰问题的种类及处理方法

laoguo 发表了文章 • 0 个评论 • 351 次浏览 • 2020-08-06 12:01 • 来自相关话题

    传感器是一种检测仪器,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出。传感器在使用过程中会产生一定的干扰问题,一直影响着传感器的测量精度。今天我们一众传感仪器有限 ...查看全部

    传感器是一种检测仪器,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出。传感器在使用过程中会产生一定的干扰问题,一直影响着传感器的测量精度。今天我们一众传感仪器有限公瓦器为您来介绍一下传感器干扰问题的忠烈及处理方法,希望可以帮助到大家。
   干扰一直影响着传感器的测量精度,干扰源、干扰种类及干扰现象。传感器及仪器仪表在现场运行所受到的干扰多种多样,具体情况具体分析,对不同的干扰采取不同的措施是抗干扰的原则。这种灵活机动的策略与普适性无疑是矛盾的,解决的办法是采用模块化的方法,除了基本构件外,针对不同的运行场合,仪器可装配不同的选件以有效地抗干扰、提高可靠性。在进一步讨论电路元件的选择、电路和系统应用之前,有必要分析影响模拟传感器精度的干扰源及干扰种类。 

  1. 主要干扰源 

  (1)静电感应 

  静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。 

  (2)电磁感应 

  当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。例如变压器及线圈的漏磁、通电平行导线等。 

  (3)漏电流感应 

  由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度较大,绝缘体的绝缘电阻下降,导致漏电电流增加就会引起干扰。尤其当漏电流流入测量电路的输入级时,其影响就特别严重。 

  (4)射频干扰 

  主要是大型动力设备的启动、操作停止的干扰和高次谐波干扰。如可控硅整流系统的干扰等。
   (5)其他干扰 

  现场安全生产监控系统除了易受以上干扰外,由于系统工作环境较差,还容易受到机械干扰、热干扰及化学干扰等。
 

2. 干扰的种类 

  (1)常模干扰 

  常模干扰是指干扰信号的侵入在往返2条线上是一致的。常模干扰来源一般是周围较强的交变磁场,使仪器受周围交变磁场影响而产生交流电动势形成干扰,这种干扰较难除掉。 

  (2)共模干扰 

  共模干扰是指干扰信号在2条线上各流过一部分,以地为公共回路,而信号电流只在往返2个线路中流过。共模干扰的来源一般是设备对地漏电、地电位差、线路本身具有对地干扰等。由于线路的不平衡状态,共模干扰会转换成常模干扰,就较难除掉了。 

  (3)长时干扰 

  长时干扰是指长期存在的干扰,此类干扰的特点是干扰电压长期存在且变化不大,用检测仪表很容易测出,如电源线或邻近动力线的电磁干扰都是连续的交流50Hz工频干扰。 

  (4)意外的瞬时干扰 

  意外瞬时干扰主要在电气设备操作时发生,如合闸或分闸等,有时也在伴随雷电发生或无线电设备工作瞬间产生。
 

  干扰可粗略地分为3个方面: 

  (a)局部产生(即不需要的热电偶); 

  (b)子系统内部的耦合(即地线的路径问题); 

  (c)外部产生(Bp电源频率的干扰)。
 

3. 干扰现象
 

  在应用中,常会遇到以下几种主要干扰现象: 

  (1)发指令时,电机无规则地转动; 

  (2)信号等于零时,数字显示表数值乱跳; 

  (3)传感器工作时,其输出值与实际参数所对应的信号值不吻合,且误差值是随机的、无规律的; 

  (4)当被测参数稳定的情况下,传感器输出的数值与被测参数所对应的信号数值的差值为一稳定或呈周期性变化的值; 

  (5)与交流伺服系统共用同一电源的设备(如显示器等)工作不正常。
 

  干扰进入定位控制系统的渠道主要有两类:信号传输通道干扰,干扰通过与系统相联的信号输入通道、输出通道进入;供电系统干扰。信号传输通道是控制系统或驱动器接收反馈信号和发出控制信号的途径,因为脉冲波在传输线上会出现延时、畸变、衰减与通道干扰,所以在传输过程中,长线的干扰是主要因素。任何电源及输电线路都存在内阻,正是这些内阻才引起了电源的噪声干扰,如果没有内阻,无论何种噪声都会被电源短路吸收,线路中也不会建立起任何干扰电压;此外,交流伺服系统驱动器本身也是较强的干扰源,它可以通过电源对其它设备进行干扰。
 

 抗干扰的措施
 

  1、供电系统的抗干扰设计 

  对传感器、仪器仪表正常工作危害zui严重的是电网尖峰脉冲干扰,产生尖峰干扰的用电设备有:电焊机、大电机、可控机、继电接触器、带镇流器的充气照明灯,甚至电烙铁等。尖峰干扰可用硬件、软件结合的办法来抑制。
 

  (1)用硬件线路抑制尖峰干扰的影响 

  常用办法主要有三种: 

  ①在仪器交流电源输入端串入按频谱均衡的原理设计的干扰控制器,将尖峰电压集中的能量分配到不同的频段上,从而减弱其破坏性; 

  ②在仪器交流电源输入端加超级隔离变压器,利用铁磁共振原理抑制尖峰脉冲; 

  ③在仪器交流电源的输入端并联压敏电阻,利用尖峰脉冲到来时电阻值减小以降低仪器从电源分得的电压,从而削弱干扰的影响。
 

  (2)利用软件方法抑制尖峰干扰 

  对于周期性干扰,可以采用编程进行时间滤波,也就是用程序控制可控硅导通瞬间不采样,从而有效地消除干扰。
 

  (3)采用硬、软件结合的看门狗(watchdog)技术抑制尖峰脉冲的影响 

  软件:在定时器定时到之前,CPU访问一次定时器,让定时器重新开始计时,正常程序运行,该定时器不会产生溢出脉冲,watchdog也就不会起作用。一旦尖峰干扰出现了“飞程序”,则CPU就不会在定时到之前访问定时器,因而定时信号就会出现,从而引起系统复位中断,保证智能仪器回到正常程序上来。
 

  (4)实行电源分组供电,例如:将执行电机的驱动电源与控制电源分开,以防止设备间的干扰。
 

  (5)采用噪声滤波器也可以有效地抑制交流伺服驱动器对其它设备的干扰。该措施对以上几种干扰现象都可以有效地抑制。
 

  (6)采用隔离变压器 

  考虑到高频噪声通过变压器主要不是靠初、次级线圈的互感耦合,而是靠初、次级寄生电容耦合的,因此隔离变压器的初、次级之间均用屏蔽层隔离,减少其分布电容,以提高抵抗共模干扰能力。 


  (7)采用高抗干扰性能的电源,如利用频谱均衡法设计的高抗干扰电源。这种电源抵抗随机干扰非常有效,它能把高尖峰的扰动电压脉冲转换成低电压峰值(电压峰值小于TTL电平)的电压,但干扰脉冲的能量不变,从而可以提高传感器、仪器仪表的抗干扰能力。
 

  2、信号传输通道的抗干扰设计
 

  (1)光电耦合隔离措施 

  在长距离传输过程中,采用光电耦合器,可以将控制系统与输入通道、输出通道以及伺服驱动器的输入、输出通道切断电路之间的。如果在电路中不采用光电隔离,外部的尖峰干扰信号会进入系统或直接进入伺服驱动装置,产生*种干扰现象。 

  光电耦合的主要优点是能有效地抑制尖峰脉冲及各种噪声干扰,使信号传输过程的信噪比大大提高。干扰噪声虽然有较大的电压幅度,但是能量很小,只能形成微弱电流,而光电耦合器输入部分的发光二极管是在电流状态下工作的,一般导通电流为10mA~15mA,所以即使有很大幅度的干扰,这种干扰也会由于不能提供足够的电流而被抑制掉。
 

  (2)双绞屏蔽线长线传输 

  信号在传输过程中会受到电场、磁场和地阻抗等干扰因素的影响,采用接地屏蔽线可以减小电场的干扰。双绞线与同轴电缆相比,虽然频带较差,但波阻抗高,抗共模噪声能力强,能使各个小环节的电磁感应干扰相互抵消。另外,在长距离传输过程中,一般采用差分信号传输,可提高抗干扰性能。采用双绞屏蔽线长线传输可以有效地抑制前文提到的干扰现象中的(2)、(3)、(4)种干扰的产生。
 

  3、局部产生误差的消除 

  在低电平测量中,对于在信号路径中所用的(或构成的)材料必须给予严格的注意,在简单的电路中遇到的焊锡、导线以及接线柱等都可能产生实际的热电势。由于它们经常是成对出现,因此尽量使这些成对的热电偶保持在相同的温度下是很有效的措施,为此一般用热屏蔽、散热器沿等温线排列。


传感器一般是怎么选型的?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 327 次浏览 • 2020-08-06 11:50 • 来自相关话题

激光雷达如何在兼顾视场角、分辨率和精度的前提下,扩大探测距离?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 320 次浏览 • 2020-08-06 11:30 • 来自相关话题

传感器问题 SCA3300-d01

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 378 次浏览 • 2020-08-02 09:06 • 来自相关话题

压力传感器有哪些因素导致误差?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 355 次浏览 • 2020-08-01 13:08 • 来自相关话题

ADXL203倾角传感器如何提高采集精度

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 346 次浏览 • 2020-07-24 08:30 • 来自相关话题

倾角传感器的分辨率是什么?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 331 次浏览 • 2020-06-14 15:47 • 来自相关话题

什么是倾角传感器的精度?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 332 次浏览 • 2020-06-14 15:44 • 来自相关话题

振动状态监测一般关注哪些关键参数?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 65 次浏览 • 2021-08-05 11:43 • 来自相关话题

SCA3300-D01精度有多高?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 82 次浏览 • 2021-07-07 17:26 • 来自相关话题

总精度/总误差带(Total accuracy / Total error band)

回复

laoguo 发起了问题 • 1 人关注 • 0 个回复 • 75 次浏览 • 2021-07-07 16:25 • 来自相关话题

压力传感器技术规格的准确度解释

回复

匿名用户 发起了问题 • 1 人关注 • 0 个回复 • 125 次浏览 • 2021-05-29 09:44 • 来自相关话题

传感器一般是怎么选型的?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 327 次浏览 • 2020-08-06 11:50 • 来自相关话题

激光雷达如何在兼顾视场角、分辨率和精度的前提下,扩大探测距离?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 320 次浏览 • 2020-08-06 11:30 • 来自相关话题

传感器问题 SCA3300-d01

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 378 次浏览 • 2020-08-02 09:06 • 来自相关话题

压力传感器有哪些因素导致误差?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 355 次浏览 • 2020-08-01 13:08 • 来自相关话题

ADXL203倾角传感器如何提高采集精度

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 346 次浏览 • 2020-07-24 08:30 • 来自相关话题

倾角传感器的分辨率是什么?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 331 次浏览 • 2020-06-14 15:47 • 来自相关话题

什么是倾角传感器的精度?

回复

laoguo 回复了问题 • 1 人关注 • 1 个回复 • 332 次浏览 • 2020-06-14 15:44 • 来自相关话题

压力传感器常用术语

laoguo 发表了文章 • 0 个评论 • 44 次浏览 • 2021-07-07 15:47 • 来自相关话题

下面是压力传感器选型时常用的术语:


标准压:以大气压为标准表示的压力大小,大于大气压的叫正压;小于大气压的叫负压。


绝对压:以绝对真空为标准表示的压力大小。


相对压:对比较对象(标准压)而言的压力大小。


大气压:指大气压力。标准大气压(1atm)相当于高度为760mm水银柱的压力。


真空:指低于大气压的压力状态。1Torr=1/760气压(atm)。

1511747511776048000.png

检测压力范围:指传感器的适应压力范围。


可承受压力:当恢复到检测压力时,其性能不下降的可承受压力。


往返精度(ON/OFF输出):当一定温度(23°C)下,当增加、减少压力时、用检测压力的全标度值去除输出进行反转的压力值而得到的动作点的压力变动值。

1511747526428077757.png


精度:在一定温度(23°C)下,当加零压力和额定压力时,用全标度值去除偏离输出电流规定值(4mA、20mA)的值而得到的值。单位用%FS表示。


线性:模拟输出对检测压力呈线性变化,但与理想直线相比有偏差。用对全标度值来说百分数来表示这种偏差的值叫线性。


磁滞(线性):用零电压和额定电压在输出电流(或电压)值间画出理想直线,把电流(或电压)值与理想电流(或电压)值之差作为误差求出来,再求出压力上升时和下降时的误差值。用全标度的电流(或电压)值去除上述差的绝对值的最大值所得的值即为磁滞。单位用%FS表示。


磁滞(ON/OFF输出):用压力的全标度值去除输出ON点压力与OFF点压力之差所得的值既是磁滞。

非腐蚀性气体:指空气中含有的物质(氮、二氧化碳等)与惰性气体(氩、氖等)


如何用加速度计提高倾角测量精度

laoguo 发表了文章 • 0 个评论 • 49 次浏览 • 2021-07-02 11:30 • 来自相关话题

本文旨在探讨如何用组合器件一类的加速度计提高倾角测量的精度。在乘用车上,电动驻车制动器(EPB)被用于使汽车在平坦的分级道路上保持静止。这是通过用一个单轴或双轴加速度计测量倾角来实现的。一般做法是将一个X轴/Y轴或Z轴低g加速度计装在EPB控制单元中一个专门的模块中。现在,越来越多的汽车配有ESC(电子稳定控制)功能,在单个芯片中集成了组合式低g加速度计和陀螺仪。这样做是为了防止汽车侧滑和翻车;如今,ESC功能已经成为世界各国或地区法律的强制要求。如果通过组合器件(单芯片、组合式加速度计和陀螺仪)实现倾角测量,则不必在车上安装一个独立的EPB模块,结果可以大幅降低汽车的成本。由于组合器件通常用于ESC,所以并未针对倾角检测优化,并且通过组合器件测量倾角时,测量精度有时无法达到要求。由于组合器件是XY轴或XYZ轴,所以通常用X轴进行倾角测量,EPB模块中的部分传统型低-g加速度计使用的是Z轴,因为它是垂直安装在发动机舱里的。检测轴应该与重力垂直,才能取得更高的精度——我们稍后会讨论这一点。

对于汽车中的倾角测量,评估精度是非常重要的。不妨想像,您的车停在绝对平坦的地面,因此,加速度计计算的倾角应该是0°。如果您的车停在斜坡上,就应该精确地检测出倾角,以便正确地激活刹车系统。

因此

其中:

AOUT 为加速度计的输出,单位为g

θ 为斜坡的倾角,单位为度。


由于sin θ是一个非线性函数,所以,AOUT与θ之间的关系是非线性 的,在接近零时其线性度处于最佳状态,即其此时具有最佳的测量精度。随着θ的增大,测量精度下降。这正是检测轴应与重力垂直的原因,因为道路坡度将接近零

对于汽车倾角测量,不必在全斜坡坡度的条件下考虑系统。现实世界中,道路上的绝大多数斜坡坡度不会超过30°。我们只需要分析在±30°的范围内分析贡献因素的精度即可。

影响系统级测量精度的贡献因素有多个:

  • 灵敏度误差和初始绝对失调

  • 非线性度

  • 与初始绝对失调的总失调变化

  • 噪声

灵敏度误差和初始绝对失调

灵敏度误差

灵敏度是对输入-输出测得的传递函数的斜率,通常为+1g和–1g。灵敏度误差为器件间的灵敏度偏差。例如,有些加速度计的最大灵敏度为3%。

初始绝对失调

范围内的失调约为25°C;例如,在模块制造完成后立即测量的值为25°C ± 5°C。初始绝对失调表示大量器件的实测偏移值的标准差。

两点校准

对于倾角测量应用,两个主要的误差来自失调误差和灵敏度误差。这两种误差会导致不可接受的检测结果,因此不得忽略。如果我们希望消除这些部分误差,则应对加速度输出进行校准。一般地,要对倾角测量的失调和灵敏度进行一次校准。若要考虑失调和灵敏度误差,则加速度计输入与输出的关系为:

其中:

A输出 为失调误差,单位为g
增益为加速度计的增益,理想值为1。
A实际为施加于加速度计的实际加速度,单位为g。

有两种基本校准技术;其中一种是单点校准。这种校准的具体做法是在加速度计上施加一个0g场,然后测量输出。这类校准只能用于校准失调误差,不能校准增益误差。然后,从实际输出值中减去0g场里的输出结果,消除失调误差。这种校准方法非常简单,但精度不足,因为仍然存在灵敏度误差。另一种方法是1g翻转校准,在+1g和–1g时采用两点校准,并在每个+1g和–1g场内按照以下公式测量加速度输出:

其中,失调A失调的单位为g

以这两点信息为基础,可以按照以下方法解出失调和增益:

其中,+1g和 1g测量值、A+1g和A–1g均以g为单位。

经过这一次校准以后,可以用该等式计算实际加速度,每次都会消除失调误差和灵敏度误差。

其中,A失调和A输出以g为单位。

非线性度

器件的非线性度为测得加速度(AMEA)与理想线性输出加速度(AFIT)之间的最大偏差。加速度测量数据集应包括加速度计的满量程范围。其测量方式为Max(|AMEA – AFIT|)。

其中:
AMEA为给定gn下的测得加速度。
AFIT 为给定gn下的预测加速度。

多数加速度计或组合器件在给定输入加速度计范围内均存在非线性——例如,30 mg ± 2g的范围。对于倾角测量应用,输入坡道斜率在±30°以内,这意味着输出加速度范围在±500 mg (±1g× sin 30°)以内,所以应重新评估该范围内的非线性度。由于非线性度在整个输入范围内是非线性的,所以,很难准确地量化评估这部分误差。然而,由于该器件的数据手册通常都很保守,线性度为30 mg,输入范围为±2g,用10 mg计算±500 mg范围内的误差更合理些。

与初始绝对失调的总失调变化

与初始绝对失调的总失调变化为温度、应力和老化效应导致的失调的最大偏差。该偏差是相对于给定器件的初始绝对失调进行测量的。这是精度总误差的主要贡献因素。

在温度、应力、老化等所有这些因素中,变化与温度在总失调变化中占比很大。一般地,变化与温度曲线是二阶曲线,通常为旋转抛物线。为了消除这部分误差,可以在系统级执行三点校准。对于给定器件,可按下列步骤校准输出失调随温度的变化值。

第1步:

使器件的输出响应以某个 ∆N0值偏移。温度校准流程的第一步是 消除环境温度下的失调。

第2步:

接下来,在高温下测试器件,用获得的新信息生成失调校正线性公式。

第3步:

给现有公式添加一个二阶分量,校正失调剩余部分。设二阶曲线遵循以下公式:

这是二阶抛物线公式,已经通过第1步和第2步消除了旋转分量。

在该公式中,该二阶抛物线有三个解:



然后,我们可以得到温度系数 a, b, c.

有关∆N0∆N1∆N2a, b, c 的所有温度系数信息应该存储在系统非易失性存储器中,同时需要一个板载温度传感器。系统会在每次上电后例行校准加速度计,确保消除失调随温度的变化值。

噪声

基于单个数据样本测量倾角不一定可靠。即使加速度计的噪声为零,倾角测量也是在汽车启动时测量的,所以,需要减小发动机、过往车辆或乘客在车上来回移动导致的任何振动。最好的办法是在不降至最低数据速率要求的条件下,在尽量长的时间内做数据平均。数据平均算法会减少rms噪声。

假如我们对噪声采样,结果可得到每个样本的方差

求一个随机变量的均值,获得以下方差,

由于噪声方差保持于σ2不变,

以上推导显示,对同一未校正噪声的n次实现求均值可使噪声功率减少n倍,并使rms噪声减少√n。

由于随机噪声受高斯分布影响,所以,rms噪声等于高斯分布的标准差。6σ以内的最小分布为97%。

例如,如果以1 kSPS的采样率对每100 ms的数据求均值,则最大rms噪声 = 0.4 mg,即是说如果以6σ作为与平均值的距离,则此时的峰值噪声仅为2.4 mg

用于与rms值相乘的因数取决于器件要执行的任务的统计需求。例如,如果选择6作为因数(峰峰值噪声为6 × RMS_Noise),则算法在器件生命周期内要运行的次数会影响超过最差情况6 × RMS_Noise 的概率。可总结如下:

E为在生命周期内超过最差情况的预期次数,M为生命周期内的运行次数,r为超过最差情况的概率。基于此,我们可以通过乘以rms噪声评估出一个合理的因数。

小结

以ADI公司的ADXC1500/ADXC1501(组合式陀螺仪和2轴/3轴加速度 计)为例,所有误差贡献项均列于表1中,包括校准和不校准两种情况。我们可以假设,总失调变化为二次曲线,并且其在温度范围内的变化占总失调变化的80%。另外,以6为因数乘以最大rms噪声。

一个陀螺仪和一个三轴加速度计的单芯片集成方案可以实现多种新型应用,尤其是在汽车安全系统和工业自动化应用领域。为了设计更加可靠、高精度的汽车安全系统,例如,稳定的电子控制系统(ESC)和侧翻检测系统,尽量减少系统误差至关重要。汽车中已安装这些传统型底盘控制系统,包括防抱死制动系统、牵引控制和偏航控制系统。


传感器的测量角度与实际角度的精确程度,也称特定条件内的误差值。