振动传感器
传感器性能如何支持状态监控解决方案
laoguo 发表了文章 • 0 个评论 • 827 次浏览 • 2021-07-15 14:38
半导体技术和能力的进步为工业应用(特别是状态监控解决方案)检测、测量、解读、分析数据提供了新的机会。基于MEMS技术的新一代传感器与诊断预测应用的先进算法相结合,扩大了测量各种机器和提高能力的机会,有助于高效监控设备,延长正常运行时间,增强过程质量,提升产量。
为了实现这些新能力并获得状态监控的益处,新解决方案必须准确、可靠、稳健,以便实时监控能够扩展到对潜在设备故障的基本检测之外,提供富有洞察力和可操作的信息。新一代技术的性能与系统级洞察力相结合,有助于人们更深入地了解解决这些挑战所需的应用和要求。
振动是机器诊断的关键要素之一,已被可靠地运用于监控各种工业应用中的最关键设备。有大量文献来支持实现高级振动监控解决方案所需的各种诊断和预测能力。但是,关于振动传感器性能参数(如带宽和噪声密度)与最终应用故障诊断能力之间关系的文献则不是很多。本文介绍工业自动化应用中的主要机器故障类型,并确定了与特定故障相关的振动传感器关键性能参数。
下面重点介绍几种常见故障类型及其特性,以便深入了解开发状态监控解决方案时必须考虑的一些关键系统要求。所述故障类型包括但不限于不平衡、未对准、齿轮故障和滚动轴承缺陷。
不平衡
什么是不平衡,什么原因导致不平衡?
不平衡是指质量分布不均匀,会导致载荷使质心偏离旋转中心。系统不平衡可归因于安装不当(例如联轴器偏心)、系统设计错误、部件故障,甚至碎屑或其他污染物的累积。举例来说,大多数感应电机内置的散热风扇可能由于灰尘和油脂的不均匀积聚或扇叶损坏而变得不平衡。
为什么不平衡系统是一个问题?
不平衡系统会产生过大振动,这些振动会机械耦合到系统内的其他部件,如轴承、联轴器和负载,进而可能导致处于良好运行状态的部件加速劣化。
如何检测和诊断不平衡
整体系统振动增加可能表明存在由不平衡系统引起的潜在故障,但振动增加的根本原因需要通过频域分析来诊断。不平衡系统以系统的旋转速率(通常称为1×)产生一个信号,其幅度与旋转速率的平方成比例,F = m×w2。1×分量在频域中通常总是存在,因此,通过测量1x和谐波的幅度可以识别不平衡系统。如果1×的幅度高于基线测量且谐波远小于1×,则很可能存在不平衡系统。水平和垂直相移振动分量也可能出现在不平衡系统中1。
诊断不平衡系统时须考虑哪些系统规格?
噪声必须很低,以便降低传感器的影响并支持检测由不平衡系统产生的小信号。这对于传感器、信号调理和采集平台非常重要。
为了检测微小的不平衡,采集系统需要有足够高的分辨率来提取信号(尤其是基线信号)。
另外还需要足够的带宽来捕获充分的信息(不光是旋转速率),以提高诊断的准确性和可靠性。1×谐波可能受其他系统故障的影响,例如未对准或机械松动,因此分析旋转速率(或1×频率)的谐波可以帮助区分系统噪声和其他潜在故障1。用于慢速旋转机器,基本旋转速率可能远低于10 rpm,这意味着传感器的低频响应对于捕获基本旋转速率至关重要。ADI公司的MEMS传感器技术可以检测低至直流的信号,并能够测量较慢的旋转设备,同时还能测量宽带宽,以获得通常与轴承和齿轮箱缺陷相关的更高频率内容。
图1.旋转速率或1X频率的幅度增加可能意味着存在不平衡系统。
未对准
什么是未对准,什么原因导致未对准?
顾名思义,当两根旋转轴未对准时,就会发生系统未对准现象。图2显示了一个理想的系统,其中从电机开始对准,然后是轴、联轴器,一直到负载(本例中是泵)。
图2.理想的对准系统
未对准可以在平行方向和角度方向上发生,也可以是两者的组合(参见图3)。当两根轴在水平或垂直方向上错位时,称为平行未对准。当其中一根轴与另一根轴成一个角度时,称为角度未对准2。
图3.不同未对准示例,包括(a)角度、(b)平行或两者的组合。
为什么未对准是一个问题?
未对准误差可能会迫使部件在高于最初设计能力的应力或负载下工作,从而影响更大的系统,最终可能导致过早失效。
如何检测和诊断未对准
未对准误差通常表现为系统旋转速率的二次谐波,称为2×。2x分量在频率响应中不一定存在,但当它存在时,其与1x的幅度关系可用来确定是否存在未对准。增加的对准误差可以将谐波激励到10×,具体取决于未对准的类型、测量位置和方向信息1。图4突出显示与潜在未对准故障相关的特征。
图4.不断增加的2×谐波加上不断增加的更高次谐波,表明可能存在未对准现象。
诊断未对准系统时须考虑哪些系统规格?
为了检测细小的未对准,需要低噪声和足够高的分辨率。机器类型、系统和工艺要求、旋转速率决定了允许的未对准容差。
另外还需要足够的带宽来捕获充分的频率范围,以提高诊断的准确性和可靠性。1×谐波可能受其他系统故障的影响,例如未对准,因此分析1×频率的谐波有助于区分其他系统故障。这尤其适合于较高转速的机器。例如,为了准确可靠地检测不平衡,转速超过10,000 rpm的机器(机床等)通常需要2 kHz以上的高质量信息。
系统相位与方向性振动信息相结合,可进一步改善对未对准误差的诊断。测量机器上不同点的振动并确定相位测量值之间或整个系统内的差异,有助于深入了解未对准是角度、平行还是两种未对准类型的组合1。
滚动元件轴承缺陷
什么是滚动元件轴承缺陷,什么原因导致这些缺陷?
滚动元件轴承缺陷通常是机械引起的应力或润滑问题的假象,这些问题在轴承的机械部件内产生小裂纹或缺陷,导致振动增加。图5提供了滚动元件轴承的一些示例,并显示了若干可能发生的缺陷。
图5.(上)滚动元件轴承和(下)润滑与放电电流缺陷的示例
为什么滚动元件轴承故障是一个问题?
滚动元件轴承几乎在所有类型的旋转机械上都会使用,从大型涡轮机到慢速旋转电机,从相对简单的泵和风扇到高速CNC主轴。轴承缺陷可能是润滑污染(图5)、安装不当、高频放电电流(图5)或系统负载增加的迹象。故障可能导致灾难性的系统损坏,并对其他系统部件产生重大影响。
如何检测和诊断滚动元件轴承故障?
有多种技术可用来诊断轴承故障,并且由于轴承设计背后的物理特性,每个轴承的缺陷频率可以根据轴承几何形状、旋转速度和缺陷类型来计算,这有助于诊断故障。轴承缺陷频率如图6所示。
对特定机器或系统的振动数据的分析,常常依赖于时域和频域分析的结合。时域分析可用来检测系统振动水平整体增加的趋势。但是,这种分析包含的诊断信息非常少。频域分析可提高诊断洞察力,但由于其他系统振动的影响,确定故障频率可能很复杂。
对于轴承缺陷的早期诊断,使用缺陷频率的谐波可识别早期或刚出现的故障,从而在灾难性故障发生之前对其进行监控和维护。为了检测、诊断、了解轴承故障的系统影响,包络检测(如图7所示)等技术与频域中的频谱分析相结合,通常可提供更具洞察力的信息。
诊断滚动元件轴承故障时须考虑哪些系统规格?
低噪声和足够高的分辨率对于早期轴承缺陷检测至关重要。在缺陷刚刚出现时,缺陷特征的幅度通常很低。由于设计容差,轴承固有的机械滑动会将幅度信息传播到轴承频率响应中的多个仓,从而进一步降低振动幅度,因此要求低噪声以便较早地检测到信号2。
带宽对于轴承缺陷的早期检测至关重要。在旋转期间,每次撞击缺陷时,都会产生包含高频内容的脉冲(参见图7)。对轴承缺陷频率(而非旋转速率)的谐波进行监测可发现这些早期故障。由于轴承缺陷频率与旋转速率之间的关系,这些早期特征可以在数千赫兹范围内出现,并延伸到10 kHz到20 kHz范围之外2。即使是低速设备,轴承缺陷的固有性质也要求较宽带宽以便及早检测到缺陷,避免系统谐振和系统噪声(会影响较低频段)的影响3。
动态范围对于轴承缺陷监测也很重要,因为系统负载和缺陷可能影响系统所经受的振动。负载增加会导致作用在轴承和缺陷上的力增加。轴承缺陷也会产生冲击,激发结构谐振,放大系统和传感器所经受的振动2。随着机器在停止/启动情况下或正常运行期间的速度上升和下降,变化的速度会为系统谐振激发创造潜在的机会,导致更高幅度的振动4。传感器的饱和可能导致信息丢失、误诊断,在某些技术的情况下甚至会损坏传感器元件。
图6.轴承缺陷频率取决于轴承类型、几何形状和旋转速率。
图7.诸如包络检测之类的技术可以从宽带宽振动数据中提取轴承早期缺陷特征。
齿轮缺陷
什么是齿轮缺陷,什么原因导致齿轮缺陷?
齿轮故障通常发生在齿轮机构的齿节中,原因有疲劳、剥落或点蚀等。其表现为齿根出现裂缝或齿面上有金属被削除。造成的原因有磨损、过载、润滑不良和齿隙,偶尔也会因为安装不当或制造缺陷而引起5。
为什么齿轮故障是一个问题?
齿轮是许多工业应用中动力传递的主要元件,承受着相当大的应力和载荷。齿轮的健康状况对整个机械系统的正常运行至关重要。可再生能源领域有一个众所周知的例子,造成风力涡轮机停机(以及相应的收入流失)的最大因素是主动力系统中多级齿轮箱的失效5。类似的考量也适用于工业应用。
如何检测和诊断齿轮故障?
由于难以将振动传感器安装在故障附近,以及系统内多种机械激励引起的相当大背景噪声的存在,齿轮故障的检测很棘手。在更复杂的齿轮箱系统中尤其如此,其中可能有多个旋转频率、齿轮比和啮合频率6。因此,检测齿轮故障可能要采用多种互补的方法,包括声发射分析、电流特征分析和油渣分析。
在振动分析方面,加速度计通常安装在齿轮箱壳体上,主要振动模式是轴向振动7。健康齿轮产生的振动特征的频率是所谓齿轮啮合频率,等于轴频率和齿轮齿数的乘积。通常还存在一些与制造和组装容差相关的调制边带。健康齿轮的这些情况如图8所示。当发生齿裂纹之类的局部故障时,每次旋转中的振动信号将包括系统对相对低能级的短时冲击的机械响应。这通常是低幅度宽带信号,一般被认为是非周期性和非静态的7,8。
图8.健康齿轮的频谱,曲轴转速为~1000 rpm,齿轮转速为~290 rpm,齿轮齿数为24。
由于这些特性,仅凭标准频域技术并不能精确识别齿轮故障。由于冲击能量包含在边带调制中,其中还可能包含来自其他齿轮对和机械部件的能量,因此频谱分析可能无法检测早期齿轮故障。时域技术(例如时间同步平均)或混合域方法(例如子波分析和包络解调)一般更合适9。
诊断齿轮故障时须考虑哪些系统规格?
一般来说,宽带宽对齿轮故障检测非常重要,因为齿轮齿数在频域中是乘数。即使对于相对低速的系统,所需的检测频率范围也会快速上升到数kHz区域。此外,局部故障进一步扩展了带宽要求。
出于多种原因,分辨率和低噪声极其关键。将振动传感器安装在特定故障区域附近是很困难的,这意味着机械系统可能会使振动信号发生较高程度的衰减,因此能够检测低能量信号至关重要。此外,由于信号不是静态周期信号,因此不能依赖于从高本底噪声中提取低幅度信号的标准FFT技术,传感器本身的本底噪声必须很低。在混合了不同元件的多个振动特征的齿轮箱环境中尤其如此。除了这些考虑因素之外,早期检测的重要性不仅仅是出于资产保护的原因,还出于信号调理的原因。已经证明,单齿断裂故障的情况与两个或更多齿断裂的故障情况相比,前者的振动严重程度可能更高,这意味着在早期进行检测可能相对更容易。
结语
虽然常见,但不平衡、未对准、滚动元件轴承缺陷和齿轮齿节故障只是高性能振动传感器可以检测和诊断的许多故障类型中的几种。更高传感器性能与适当的系统级考量相结合,有助于实现新一代状态监控解决方案,让人们更深入了解各种工业设备和应用的机械运作。这些解决方案将改变维护的执行方式和机器的运行方式,最终减少停机时间,提高效率,并使下一代设备具备新能力。
表1.对每个传感器参数的要求
对于表1,一般认为低带宽小于1 kHz,中带宽介于1 kHz到5 kHz之间,高带宽大于5 kHz。低噪声密度大于1 mg/√Hz,中等噪声密度介于100 μg/√Hz到1 mg/√Hz之间,高噪声密度小于100 μg/√Hz。低动态范围小于5 g,中等动态范围在5 g到20 g之间,高动态范围大于20 g。
选择最佳的振动传感器来进行风轮机状态监控
laoguo 发表了文章 • 0 个评论 • 919 次浏览 • 2021-07-15 12:18
据保守估计,目前全球至少安装了25万台风轮机。未来四年里,全球风轮机市场预计将增长278 GW的陆上容量、44.3 Gw的海上容 量。1 这相当于至少100,000台3 MW的风轮机。随着可再生能源呈现这种增长,加上国家电网的电力投入,风轮机(WT)装置的可靠运行已成为工业和政府结构着重研究的课题。对WT可靠性的量化研究显示,可靠性随时间不断提升。例如,2016年美国国家可再生能源实验室报告2 显示,在2007年至2013年间,包括变速箱在内的大多数WT子系统的可靠性都得到了提高,变速箱停机时间缩短了7倍。但是,在2018年,变速箱仍然是三大常见故障点之一,且材料成本最高。2,3 变速箱每次故障的平均成本最高,一次大型更换平均花费€230,000。4
变速箱组件的可靠性相对较差,因此需要重点对齿轮、轴承和轴实施状态监控。除了变速箱之外,转子叶片和发电机是WT系统中 故障率最高的组件。5,6 目前商用风轮机状态监控系统有很多,其中大部分使用振动传感器来实施变速箱分析。目前已经有一些 商用的转子叶片监控系统 7 ,但这个领域尚待继续研究。大量相关资料支持在风轮机中使用振动监控系统,包括详细调查和分 析各种系统的优势。8 但很少有资料会介绍风轮机应用对振动传感器的要求。本文从系统角度,提供关于风轮机组件、故障统计、 常见故障类型和故障数据收集方法等的见解。本文从WT组件上的常见故障入手,讨论振动传感器要求,例如带宽、测量范围和噪声密度等。
系统组件、故障和传感器要求
图1和图2显示风轮机系统的主要组件,并提供风轮机变速箱的详细结构。下面几节将重点介绍变速箱、叶片和塔架对状态监 控的要求,重点介绍振动传感器。对于其他系统,例如偏航驱动、机械刹车和发电机,我们一般不使用振动传感器进行监控,而是监控扭矩、温度、润滑油参数和电信号。
图1. 风轮机系统组件
图2. 变速箱的结构
变速箱
风轮机变速箱将机械能从低转速的转子轮毂传输到高速发电机。同时,WT变速箱承受着不同风速带来的交替载荷,以及频 繁制动导致的瞬变脉冲。变速箱包括一个低速转子轴和主轴承,在风力驱动转子叶片时以0 rpm至20 rpm(不到0.3 Hz)的转速运 行。要捕获不断增加的振动信号,需要振动传感器使用直流电运行。行业认证指南特别指出,振动传感器的性能需要达到0.1 Hz。9 变速箱的高速轴通常以3200 rpm (53 Hz)的转速运行。为了提供足够带宽来捕捉轴承和齿轮故障的谐波,推荐低速和高速轴振动传感器的性能达到10 kHz及以上。9 这是因为无论转速多大,轴承谐振一般都在几千赫范围内。10
到目前为止,轴承故障是引发变速箱故障的最大原因。一些研究表明,轴承故障是引发灾难性齿轮故障的根本原因。 11 当高速轴上的后轴承失效时,高速轴发生倾斜,造成中间(中部)轴齿轮的传输不均。在这种情况下,齿轮的接触齿极易发生故障,如图3所示。
图3. 中轴齿轮断齿
轴承润滑(油)不足是导致主轴轴承故障的主要原因。可用的解决方案(例如SKF NoWear)包括特殊轴承涂层, 12 可将缺油运行时间提高6倍以上。
即使采用特殊的轴承涂层和其他变速箱改进方法,我们仍然需要使用合适的振动传感器来监控变速箱的主要轴承和高速轴承。振 动传感器的本底噪声需要足够低,以便能够检测到早期振动幅度(g范围)较低的轴承故障。较老的MEMS技术,例如ADXL001 ,其本底噪声为4 mg/√Hz,足以捕捉轴承外环的故障。13 图4显示,外环故障先出现约0.055 g的频率峰值,且轴承表现良好,从噪声密度角度来看,本底噪声低于2 mg/√Hz。参考的13数据采集系统的过程增益导致噪声大幅降低,因此测量得出2 mg/√Hz本底噪声。只有在DAQ 系统实现了足够的过程增益,且噪声为随机的情况下,才适合使用本底噪声为4 mg/√Hz的传感器。一般情况下,最好使用本底噪声 为100 µg/√Hz至200 µg/√Hz的振动传感器,而不是基于过程增益,后者只有在噪声为随机且不相关的情况下适用。
本底噪声在100 µg/√Hz至200 µg/√Hz之间的传感器在捕捉正常的轴承运行状况方面表现出色,在捕捉mg/√Hz范围内的早期故障时则 表现卓异。事实上,使用本底噪声为100 µg/√Hz的MEMS传感器甚至能够更早检测出轴承故障。
图4. 使用MEMS加速度计ADXL001测量轴承外环的故障
在不到0.1 g时,显示初始轴承损坏,而在达到1 g时,通常表示深度 轴承损坏,这会触发维护。 14 图5显示,当振动幅值超过6 g时,需维护变速箱和更换轴承。如前所述,轴承故障频率会在更高频率下 发生。在更高频率下实施测量需要使用g范围规格更大的传感器。这是因为测得的加速度重力值与频率成比例。因此,与在低频率下 相比,在更高频率下,相同的少量故障位移会导致更高的重力范围。一般指定在50 g至200 g时使用测量范围高达10 kHz、更高带宽的传感 器,尤其指定适用于风轮机应用.由于结构冲击或突然的机械断裂,振动传感器也需要涵盖冲击载荷工况。因此,一般将典型的商用振动监控系统的满量程定为至少为50 g至100 g。
图5. 振动幅度为6 g时的轴承位移
对于风轮机主轴承,要求至少使用一个单轴振动传感器,推荐使用两个,并在轴向和径向上测量。 9 轴承环上的轴向开裂可能使轴 承寿命缩短至仅一到两年。15
由于变速箱本身很复杂,如图2所示,所以建议使用至少6个振动传感器来实施状态监控。 9 在选择传感器的数量和位置时,应确保能够可靠测量所有齿轮啮合和缺陷/转动频率。监控变速箱的 低速级时,需要使用一个单轴传感器,放置在尽可能靠近环形齿轮的位置。监控变速箱的中间和高速级时,需要在中心齿轮、 中间轴和高速轴位置使用一个单轴传感器。高速和中速轴承内环的轴向开裂已成为影响风轮机变速箱寿命的主要原因。15
对于变速箱监控,未来要改善的状态监控领域包括无线振动监控系统的采用,但持续研究才能持续为这些解决方案提供支持。8
转子叶片
风轮机的转子叶片和轮毂组件在低速下捕捉风并传输扭矩。导致叶片故障的主要原因包括极端风荷载、结冰或雷电等环境 影响,以及不平衡。这些因素导致断裂和边缘开裂,以及径节系统故障。目前只有少量商用振动监控系统,可以分布在叶片外部和内部。 8 已经使用MEMS振动传感器在叶片上开展大量学术研究,比如Cooperman和Martinez的工作, 16 其中还包括陀螺仪和磁力仪。我们使用这些传感器的联合输出来确定风轮机叶片的方向和变形。相比之下,很少有商用振动监控系 Weidmuller BLADEcontrol®,17 ,它使用每个转子叶片内的振动传感器来测量每个叶片的自动振动行为的变化。BL ADEcontrol系统主要用于检测引起涡轮过度振动的转子叶片上的极端结冰状况。
一般来说,大型风轮机叶片(即直径40米以上的叶片)的首级固有频率在0.5 Hz至15 Hz之间。 18 对涡轮叶片 18 上的无线振动监控系统的可行性研究显示,因振动激励导致的叶片频率响应远高于基频。其他研究 19 表明,由叶片边缘变形引起的叶片频率与叶片扭转变形引起的叶片频率之间有显著差异。叶片边缘变形的固有频率在0.5 Hz至30 Hz之间,叶片扭转变形的固有频率高达700 Hz。用振动传感器测量基频以外的频率需要更大的带宽。DNVGL状态监控规范认证9建议对转子叶片使用振动传感器,它能够测量0.1 Hz至≥10 kHz的频率范围,其中一个传感器放在转子轴上,另一个放在横向方向上。振动传感器在转子叶片上可以实现高频率测量范围,它也必须具备至少50 g的大幅度测量范围,与变速箱轴承的要求类似。
带风机的塔
风轮机塔为风机外壳和转子叶片总成提供结构支撑。塔身会遭受冲击损坏,导致塔出现倾斜。塔倾斜之后,叶片与风向之间无法保持最佳角度。测量倾斜度需要使用操作功率可以低至0 Hz的传感器,如此在零风条件下,也可以检测到倾斜。
基座部分的结构破坏会导致塔摇晃。塔摇晃监控集成在一些涡轮状态监控系统中,与变速箱振动监控相比,可以商用的选项并不多。 8 Scaime状态监控系统 20 使用加速度计、位移传感器、应变传感器和温度传感器来监控叶片、塔和基座的状况。根据DNVGL规范,Scaime加速度计的满量程范围为±2 g, 20 监控频率范围为0.1 Hz至100 Hz。 9如前所述,在静态条件下(无风力),当塔架结构发生故障导致倾斜时,频率的最低限值降低至0 Hz。要实施倾斜测量,需要使用具有良好的直流稳定性能的传感器。MEMS传感器,例如ADXL355采 用气密封装,可以实现行业领先的0 g失调稳定性。
研究 21 证实,最小±2 g范围的振动传感器足以对塔实施监控。在正常运行模式下,25 mps的最大风速可产生小于1 g的加速度重力电平。事实上,在"基于现场测量和有限元分析的风轮机塔基础系统可识别应力状态" 21 研究中,额定风速为2 mps到25 mps,风轮机会在风速为25 mps时关断(停用)。
总结
表1基于风轮机应用需求提供振动传感器的需求摘要。DNVGL状态监控规范认证中给出了传感器的数量、测量方向和频率范围。 9 如 前所述,0 Hz性能对于监控塔架的结构问题非常重要。表1还根据本文提供的现场研究和测量总结了合适的幅度范围和噪声密度。
故障数据收集方法
所有大规模实体WT都有标准的监控控制和数据采集(SCADA)系统,主要用于实施参数监控。监控参数的示例包括变速箱轴承温度和润滑、主动功率输出和相电流。一些参考资料 6 讨论使用SCADA数据进行风轮机状态监控,以检测趋势。英国杜伦大学的一项调查 7 列出了多达10个商用状态监控系统,这些系统可以适配并与使用标准协议的现有SCADA系统完全集成。GE Energy ADAPT.Wind就是这样一个示例。 22 对未来技术趋势的广泛调查 7 显示,在风轮机上安装振动监控系统是一个明显的倾向。
用于风轮机状态监控的合适的振动传感器
在等于或低于0.3 Hz时,压电振动技术难以或无法捕获振动特征。这意味着无法对低速WT部件,例如转子叶片、主轴承、低速变速箱,塔等实施正常监控。基于MEMS的传感器的性能可以低至0 Hz,可以捕捉所有主要风轮机组件中的关键故障。这为客户提供了用 于WT的单一振动传感器解决方案,仅使用MEMS来测量从0 Hz到高达10 kHz及以上的故障。
除了能够捕捉所有关键故障之外,MEMS还具有以下优点:
宽重力测量范围和超低的µg/√Hz噪声密度,可以轻松满足表1中给出的要求。
MEMS具有内置自测(BIST)功能。系统操作员无需访问WT来测试/确保传感器正确运行,可以节约成本。相比之下,压电技术不具备BIST功能。
与基于压电的解决方案相比,MEMS接口在数据接口和电源供应方面更加灵活。在将高阻抗压电传感器输出解译到长电缆 时,可用的选项有限。最常采用的是双线IEPE接口,使用第二根接地线通过共享电源/数据线为压电传感器供电。IEPE使用与压电解决方案匹配的放大器来提供低阻抗电缆驱动解决方案。IEPE接口解决方案可以使用MEMS传感器,但MEMS传感器也能与使用现场总线(RS-485、CAN)或基于以太网的网络操作的现有系统轻松集成。这是因为MEMS传感器可以提供模拟输出或数字输出(SPI、IC),并轻松传输至其他协议。
环保性能:WT通常在-40˚C到+55˚C的温度下运行,而MEMS器件很容易满足这一要求。
与基于压电的传感器相比,MEMS在长时间使用时具有更好的灵敏度和线性度。ADI加速度计的非线性程度很低,通常可以 忽略不计。例如, ADXL1001 MEMS加速度计在满量程范围内具有小于0.025%的典型非线性规格。相比之下,对基于压电传感器的标准化测量的学术研究显示,非线性度为0.5%或更低。23
如今可用的基于MEMS的振动传感器和解决方案
传感器
使用 ADXL1002、 ADXL1003、 ADXL1005、 和 ADcmXL3021 MEMS传感器(如图2 所示)可以轻松满足风轮机应用的振动监控对带宽、范围和噪 声密度的要求。 ADXL355 和 ADXL357 也适合用于实施风轮机塔监控, 具有较低的带宽和范围测量性能。ADXL355/ADXL357具有良好的直流稳定性,这对于测量风轮机塔的倾斜度非常重要。ADXL355/ ADXL357的气密封装保证了良好的长期稳定性。在10年使用寿命中,ADXL355的重复性在±3.5 mg以内,为倾斜测量提供了高度精准的 传感器。
风轮机状态监控解决方案
无线
ADI提供一套完整的验证参考设计、评估系统和即插即用机器健康传感器模块,以加速客户的设计进度。图6显示ADI无线振动监控评估平台。 该系统解决方案整合了机械附件、硬件、固件和PC软件,可以快速部署和评估单轴振动监测解决方案。该模块可以通过磁性方式或螺柱直接连接到电机或固定装置。作为基于状态的监控(CbM)系统的一部分,它也可以与同一无线Mesh网络上的其他模块组合使用,以提供具有多个传感器节点的范围更广的图像。
图6. 无线振动监控评估平台
CbM硬件信号链包含一个安装在模块底座上的单轴ADXL1002加 速度计。将ADXL1002的输出读入 ADuCM4050低功耗微控制器,并在此对其进行缓冲,转换至频域并传输至SmartMesh® IP终端。将ADXL1002的输出从SmartMesh芯片无线传输到SmartMesh IP管理器。管理器连接到PC,可以进行可视化处理和数据保存。数据显示为原始时域数据和FFT数据。还提供了有关时间汇总数据的其他摘要统计信息。提供了PC端GUI的完整Python®代码以及部署于模块上的C语言固件,以便客户修改。
有线
ADI的 Pioneer 1有线CbM评估平台 为 ADcmXL3021 三轴振动传感器提 供工业有线链接解决方案。CbM硬件信号链由三轴ADcmXL3021加速度计和Hirose flex PCB连接器组成。带有SPI和中断输出的ADcmXL3021 Hirose连接器与接口PCB相连,通过数米长的电缆将发送至RS-485物理层的SPI转化发送至远程主控制器板。SPI到RS-485 物理层的转换可以使用隔离或非隔离的接口PCB实现,其中包括 iCoupler® 隔离 (ADuM5401/ADuM110N)和RS-485/RS-422收发器(ADM4168E/ADM3066E)。该解决方案通过一根标准电缆将电能和数据结合在一起,从而降低了远程MEMS传感器节点的电缆和连接器成本。专用软件GUI可以简单配置ADcmXL3021器件,并在长电缆上捕捉振动数据。GUI软件将数据可视化显示为原始时间域或FFT波形。
图7. 有线振动监控评估平台
结论
本文证明基于MEMS的传感器可以测量风轮机的关键系统中的所有关键故障。MEMS传感器的带宽、测量范围、直流稳定性和噪声 密度均妥善指定,在风轮机应用中具有出色性能。
MEMS内置自测(BIST)、灵活的模拟/数字接口,以及长时间使用过程中的出色的灵敏度/线性度,这是MEMS传感器成为最佳风轮机 状态监控解决方案的另外一些原因。基于振动检测早期故障的维护系统是一项现代技术,可以防止整个风轮机出现成本高昂的停机。
转自EETOP
工业振动传感器选型的九个因素
laoguo 发表了文章 • 0 个评论 • 1187 次浏览 • 2020-06-10 13:50
工业振动传感器选型1:你想要测量什么?
这似乎是显而易见的,但请三思。什么是你真正要测量的?换句话说,你想做什么?你希望得到什么?你打算怎么处理数据?加速度传感器可以监测振动,提供原始振动数据,而振动变送器提供均方根(RMS)值。分析原始振动数据是有用的,因为它包含了所有振动信号的信息,真实的峰值振幅和振动频率。因为RMS总值或峰值是连续4-20 mA信号,在如PLC,DCS,SCADA系统和PI控制系统中非常有用。一些应用程序同时使用两种信号。通过确定应用程序所需的各种信号,可以大大缩小搜索范围。另外,你测量振动是用加速度还是速度或位移?你有没有考虑一些工业传感器可以同时输出振动和温度?最后,一些现场应用,如立式泵,最好监测一个以上的轴振动。您的现场应用是否需要单轴,双轴或三轴测量?
工业振动传感器选型2:振幅有多大?
被测振动的最大振幅或范围,决定使用哪种范围的传感器。典型的加速度传感器灵敏度100 mV/g,标准应用(50g范围)和500 mV/ g的低频率或低幅值的应用(10g范围)。 一般工业应用的4-20 mA变送器通常使用0-1 in/s或0-2in/s的范围。
工业振动传感器选型3:振动频率是多少?
对于不同的激励频率,物理结构和动力系统的反应不同。振动传感器是没有什么不同。压电材料的性质,就像高通滤波器,因此,即使是最好的压电式传感器,也有约0.2Hz的低频率的限制。传感器作为一个单自由度的动态系统,具有自然共振频率。信号在自然共振频率时被大大放大,导致灵敏度显着的变化,很可能超量程。大多数工业加速度计有单或双RC滤波器抵消激发的共振频率。选择传感器可用的频率范围,其范围包括你感兴趣的频率,这是很关键的。
工业振动传感器选型4:环境温度是多少?
对于ICP加速度传感器和4-20mA变送器,极高的环境温度对内部电子构成威胁。充电模式的加速传感器可以在非常高的环境温度下使用,其没有内置电子,而是使用远程电荷放大器。充电模式加速传感器配有一体硬线电缆,可以应用在温度超过260°℃环境下,例如燃气轮机振动监测等。
工业振动传感器选型5: 是否会浸没在液体中?
配有一体聚氨酯电缆的工业加速度传感器可以浸入液体永久安装。对于高压的应用,最好传感器进行一小时的压力测试。完全淹没的应用需要一体电缆。在喷洒而非完全淹没的场合上一体电缆也是需求的,如机床切削液。
工业振动传感器选型6: 是否会暴露在潜在有害的化学物质或碎片中?
工业加速度传感器可以使用耐腐蚀和耐化学腐蚀的不锈钢进行构造。在有害化学物质的环境中,传感器考虑使用聚四氟乙烯耐腐蚀的连接电缆。强烈建议检查任何可疑化学物质的化学兼容性图表。对于能接触到切屑的环境,一体铠装电缆能提供良好的保护。
工业振动传感器选型7:你是否需要顶出,偏出,小巧的链接?
最终,传感器都需要在设备的可用空间伤安装。传感器的形状对其性能影响不大,但需考虑现场安全安装和维修操作。配有锁紧螺母设计的小巧加速度传感器,能够在任何方向固定,但配有一体电缆时,很方便。
工业振动传感器选型8:你是使用高精度的还是低成本的传感器?
低成本和高精度加速度传感器有两个主要区别。首先,精度单位通常完整标定,这是指在可用频率范围内进行灵敏度响应测量绘图。低成本加速度传感器是单点标定,只在一个频率进行灵敏度测量。第二,高精度加速度传感器在某些规格有严格的公差如灵敏度和频率范围。
例如,一个高精度的加速度传感器标称灵敏度为100 mV/ g±5%(95 mV/g至105mV/g),而一个低成本加速度传感器标称灵敏度100门V/g± 10%(90 mV/g至110mV/g)。客户可以在数据采集系统设置为传感器的标定灵敏度,这样低成本的传感器也能提供准确,可重复的数据。至于频率,高精度加速度传感器通常最大偏差是5%,而低成本的传感器,可以提供3 dB的频率范围。尽管如此,一个低成本的传感器可以提供优异的频率响应。
工业振动传感器选型9: 你需求特殊的认证码?
得到CSA和ATEX认证的加速度传感器和4-20 mA变送器都可以在危险区域使用。比较传感器的认证,以确保它符合您的需求。
九个问题的答案,可以大大缩小您的搜索,以寻找应用的最佳解决方案。牢记,组合在一起的答案可能是相互排斥的,也就是说,解决方案满足每个标准不存在的。例如,在危险区域使用的特定模式可能没有的ATEX认证。此外,专门的现场应用可能有其他方面的考虑。
传感器性能如何支持状态监控解决方案
laoguo 发表了文章 • 0 个评论 • 827 次浏览 • 2021-07-15 14:38
半导体技术和能力的进步为工业应用(特别是状态监控解决方案)检测、测量、解读、分析数据提供了新的机会。基于MEMS技术的新一代传感器与诊断预测应用的先进算法相结合,扩大了测量各种机器和提高能力的机会,有助于高效监控设备,延长正常运行时间,增强过程质量,提升产量。
为了实现这些新能力并获得状态监控的益处,新解决方案必须准确、可靠、稳健,以便实时监控能够扩展到对潜在设备故障的基本检测之外,提供富有洞察力和可操作的信息。新一代技术的性能与系统级洞察力相结合,有助于人们更深入地了解解决这些挑战所需的应用和要求。
振动是机器诊断的关键要素之一,已被可靠地运用于监控各种工业应用中的最关键设备。有大量文献来支持实现高级振动监控解决方案所需的各种诊断和预测能力。但是,关于振动传感器性能参数(如带宽和噪声密度)与最终应用故障诊断能力之间关系的文献则不是很多。本文介绍工业自动化应用中的主要机器故障类型,并确定了与特定故障相关的振动传感器关键性能参数。
下面重点介绍几种常见故障类型及其特性,以便深入了解开发状态监控解决方案时必须考虑的一些关键系统要求。所述故障类型包括但不限于不平衡、未对准、齿轮故障和滚动轴承缺陷。
不平衡
什么是不平衡,什么原因导致不平衡?
不平衡是指质量分布不均匀,会导致载荷使质心偏离旋转中心。系统不平衡可归因于安装不当(例如联轴器偏心)、系统设计错误、部件故障,甚至碎屑或其他污染物的累积。举例来说,大多数感应电机内置的散热风扇可能由于灰尘和油脂的不均匀积聚或扇叶损坏而变得不平衡。
为什么不平衡系统是一个问题?
不平衡系统会产生过大振动,这些振动会机械耦合到系统内的其他部件,如轴承、联轴器和负载,进而可能导致处于良好运行状态的部件加速劣化。
如何检测和诊断不平衡
整体系统振动增加可能表明存在由不平衡系统引起的潜在故障,但振动增加的根本原因需要通过频域分析来诊断。不平衡系统以系统的旋转速率(通常称为1×)产生一个信号,其幅度与旋转速率的平方成比例,F = m×w2。1×分量在频域中通常总是存在,因此,通过测量1x和谐波的幅度可以识别不平衡系统。如果1×的幅度高于基线测量且谐波远小于1×,则很可能存在不平衡系统。水平和垂直相移振动分量也可能出现在不平衡系统中1。
诊断不平衡系统时须考虑哪些系统规格?
噪声必须很低,以便降低传感器的影响并支持检测由不平衡系统产生的小信号。这对于传感器、信号调理和采集平台非常重要。
为了检测微小的不平衡,采集系统需要有足够高的分辨率来提取信号(尤其是基线信号)。
另外还需要足够的带宽来捕获充分的信息(不光是旋转速率),以提高诊断的准确性和可靠性。1×谐波可能受其他系统故障的影响,例如未对准或机械松动,因此分析旋转速率(或1×频率)的谐波可以帮助区分系统噪声和其他潜在故障1。用于慢速旋转机器,基本旋转速率可能远低于10 rpm,这意味着传感器的低频响应对于捕获基本旋转速率至关重要。ADI公司的MEMS传感器技术可以检测低至直流的信号,并能够测量较慢的旋转设备,同时还能测量宽带宽,以获得通常与轴承和齿轮箱缺陷相关的更高频率内容。
图1.旋转速率或1X频率的幅度增加可能意味着存在不平衡系统。
未对准
什么是未对准,什么原因导致未对准?
顾名思义,当两根旋转轴未对准时,就会发生系统未对准现象。图2显示了一个理想的系统,其中从电机开始对准,然后是轴、联轴器,一直到负载(本例中是泵)。
图2.理想的对准系统
未对准可以在平行方向和角度方向上发生,也可以是两者的组合(参见图3)。当两根轴在水平或垂直方向上错位时,称为平行未对准。当其中一根轴与另一根轴成一个角度时,称为角度未对准2。
图3.不同未对准示例,包括(a)角度、(b)平行或两者的组合。
为什么未对准是一个问题?
未对准误差可能会迫使部件在高于最初设计能力的应力或负载下工作,从而影响更大的系统,最终可能导致过早失效。
如何检测和诊断未对准
未对准误差通常表现为系统旋转速率的二次谐波,称为2×。2x分量在频率响应中不一定存在,但当它存在时,其与1x的幅度关系可用来确定是否存在未对准。增加的对准误差可以将谐波激励到10×,具体取决于未对准的类型、测量位置和方向信息1。图4突出显示与潜在未对准故障相关的特征。
图4.不断增加的2×谐波加上不断增加的更高次谐波,表明可能存在未对准现象。
诊断未对准系统时须考虑哪些系统规格?
为了检测细小的未对准,需要低噪声和足够高的分辨率。机器类型、系统和工艺要求、旋转速率决定了允许的未对准容差。
另外还需要足够的带宽来捕获充分的频率范围,以提高诊断的准确性和可靠性。1×谐波可能受其他系统故障的影响,例如未对准,因此分析1×频率的谐波有助于区分其他系统故障。这尤其适合于较高转速的机器。例如,为了准确可靠地检测不平衡,转速超过10,000 rpm的机器(机床等)通常需要2 kHz以上的高质量信息。
系统相位与方向性振动信息相结合,可进一步改善对未对准误差的诊断。测量机器上不同点的振动并确定相位测量值之间或整个系统内的差异,有助于深入了解未对准是角度、平行还是两种未对准类型的组合1。
滚动元件轴承缺陷
什么是滚动元件轴承缺陷,什么原因导致这些缺陷?
滚动元件轴承缺陷通常是机械引起的应力或润滑问题的假象,这些问题在轴承的机械部件内产生小裂纹或缺陷,导致振动增加。图5提供了滚动元件轴承的一些示例,并显示了若干可能发生的缺陷。
图5.(上)滚动元件轴承和(下)润滑与放电电流缺陷的示例
为什么滚动元件轴承故障是一个问题?
滚动元件轴承几乎在所有类型的旋转机械上都会使用,从大型涡轮机到慢速旋转电机,从相对简单的泵和风扇到高速CNC主轴。轴承缺陷可能是润滑污染(图5)、安装不当、高频放电电流(图5)或系统负载增加的迹象。故障可能导致灾难性的系统损坏,并对其他系统部件产生重大影响。
如何检测和诊断滚动元件轴承故障?
有多种技术可用来诊断轴承故障,并且由于轴承设计背后的物理特性,每个轴承的缺陷频率可以根据轴承几何形状、旋转速度和缺陷类型来计算,这有助于诊断故障。轴承缺陷频率如图6所示。
对特定机器或系统的振动数据的分析,常常依赖于时域和频域分析的结合。时域分析可用来检测系统振动水平整体增加的趋势。但是,这种分析包含的诊断信息非常少。频域分析可提高诊断洞察力,但由于其他系统振动的影响,确定故障频率可能很复杂。
对于轴承缺陷的早期诊断,使用缺陷频率的谐波可识别早期或刚出现的故障,从而在灾难性故障发生之前对其进行监控和维护。为了检测、诊断、了解轴承故障的系统影响,包络检测(如图7所示)等技术与频域中的频谱分析相结合,通常可提供更具洞察力的信息。
诊断滚动元件轴承故障时须考虑哪些系统规格?
低噪声和足够高的分辨率对于早期轴承缺陷检测至关重要。在缺陷刚刚出现时,缺陷特征的幅度通常很低。由于设计容差,轴承固有的机械滑动会将幅度信息传播到轴承频率响应中的多个仓,从而进一步降低振动幅度,因此要求低噪声以便较早地检测到信号2。
带宽对于轴承缺陷的早期检测至关重要。在旋转期间,每次撞击缺陷时,都会产生包含高频内容的脉冲(参见图7)。对轴承缺陷频率(而非旋转速率)的谐波进行监测可发现这些早期故障。由于轴承缺陷频率与旋转速率之间的关系,这些早期特征可以在数千赫兹范围内出现,并延伸到10 kHz到20 kHz范围之外2。即使是低速设备,轴承缺陷的固有性质也要求较宽带宽以便及早检测到缺陷,避免系统谐振和系统噪声(会影响较低频段)的影响3。
动态范围对于轴承缺陷监测也很重要,因为系统负载和缺陷可能影响系统所经受的振动。负载增加会导致作用在轴承和缺陷上的力增加。轴承缺陷也会产生冲击,激发结构谐振,放大系统和传感器所经受的振动2。随着机器在停止/启动情况下或正常运行期间的速度上升和下降,变化的速度会为系统谐振激发创造潜在的机会,导致更高幅度的振动4。传感器的饱和可能导致信息丢失、误诊断,在某些技术的情况下甚至会损坏传感器元件。
图6.轴承缺陷频率取决于轴承类型、几何形状和旋转速率。
图7.诸如包络检测之类的技术可以从宽带宽振动数据中提取轴承早期缺陷特征。
齿轮缺陷
什么是齿轮缺陷,什么原因导致齿轮缺陷?
齿轮故障通常发生在齿轮机构的齿节中,原因有疲劳、剥落或点蚀等。其表现为齿根出现裂缝或齿面上有金属被削除。造成的原因有磨损、过载、润滑不良和齿隙,偶尔也会因为安装不当或制造缺陷而引起5。
为什么齿轮故障是一个问题?
齿轮是许多工业应用中动力传递的主要元件,承受着相当大的应力和载荷。齿轮的健康状况对整个机械系统的正常运行至关重要。可再生能源领域有一个众所周知的例子,造成风力涡轮机停机(以及相应的收入流失)的最大因素是主动力系统中多级齿轮箱的失效5。类似的考量也适用于工业应用。
如何检测和诊断齿轮故障?
由于难以将振动传感器安装在故障附近,以及系统内多种机械激励引起的相当大背景噪声的存在,齿轮故障的检测很棘手。在更复杂的齿轮箱系统中尤其如此,其中可能有多个旋转频率、齿轮比和啮合频率6。因此,检测齿轮故障可能要采用多种互补的方法,包括声发射分析、电流特征分析和油渣分析。
在振动分析方面,加速度计通常安装在齿轮箱壳体上,主要振动模式是轴向振动7。健康齿轮产生的振动特征的频率是所谓齿轮啮合频率,等于轴频率和齿轮齿数的乘积。通常还存在一些与制造和组装容差相关的调制边带。健康齿轮的这些情况如图8所示。当发生齿裂纹之类的局部故障时,每次旋转中的振动信号将包括系统对相对低能级的短时冲击的机械响应。这通常是低幅度宽带信号,一般被认为是非周期性和非静态的7,8。
图8.健康齿轮的频谱,曲轴转速为~1000 rpm,齿轮转速为~290 rpm,齿轮齿数为24。
由于这些特性,仅凭标准频域技术并不能精确识别齿轮故障。由于冲击能量包含在边带调制中,其中还可能包含来自其他齿轮对和机械部件的能量,因此频谱分析可能无法检测早期齿轮故障。时域技术(例如时间同步平均)或混合域方法(例如子波分析和包络解调)一般更合适9。
诊断齿轮故障时须考虑哪些系统规格?
一般来说,宽带宽对齿轮故障检测非常重要,因为齿轮齿数在频域中是乘数。即使对于相对低速的系统,所需的检测频率范围也会快速上升到数kHz区域。此外,局部故障进一步扩展了带宽要求。
出于多种原因,分辨率和低噪声极其关键。将振动传感器安装在特定故障区域附近是很困难的,这意味着机械系统可能会使振动信号发生较高程度的衰减,因此能够检测低能量信号至关重要。此外,由于信号不是静态周期信号,因此不能依赖于从高本底噪声中提取低幅度信号的标准FFT技术,传感器本身的本底噪声必须很低。在混合了不同元件的多个振动特征的齿轮箱环境中尤其如此。除了这些考虑因素之外,早期检测的重要性不仅仅是出于资产保护的原因,还出于信号调理的原因。已经证明,单齿断裂故障的情况与两个或更多齿断裂的故障情况相比,前者的振动严重程度可能更高,这意味着在早期进行检测可能相对更容易。
结语
虽然常见,但不平衡、未对准、滚动元件轴承缺陷和齿轮齿节故障只是高性能振动传感器可以检测和诊断的许多故障类型中的几种。更高传感器性能与适当的系统级考量相结合,有助于实现新一代状态监控解决方案,让人们更深入了解各种工业设备和应用的机械运作。这些解决方案将改变维护的执行方式和机器的运行方式,最终减少停机时间,提高效率,并使下一代设备具备新能力。
表1.对每个传感器参数的要求
对于表1,一般认为低带宽小于1 kHz,中带宽介于1 kHz到5 kHz之间,高带宽大于5 kHz。低噪声密度大于1 mg/√Hz,中等噪声密度介于100 μg/√Hz到1 mg/√Hz之间,高噪声密度小于100 μg/√Hz。低动态范围小于5 g,中等动态范围在5 g到20 g之间,高动态范围大于20 g。
选择最佳的振动传感器来进行风轮机状态监控
laoguo 发表了文章 • 0 个评论 • 919 次浏览 • 2021-07-15 12:18
据保守估计,目前全球至少安装了25万台风轮机。未来四年里,全球风轮机市场预计将增长278 GW的陆上容量、44.3 Gw的海上容 量。1 这相当于至少100,000台3 MW的风轮机。随着可再生能源呈现这种增长,加上国家电网的电力投入,风轮机(WT)装置的可靠运行已成为工业和政府结构着重研究的课题。对WT可靠性的量化研究显示,可靠性随时间不断提升。例如,2016年美国国家可再生能源实验室报告2 显示,在2007年至2013年间,包括变速箱在内的大多数WT子系统的可靠性都得到了提高,变速箱停机时间缩短了7倍。但是,在2018年,变速箱仍然是三大常见故障点之一,且材料成本最高。2,3 变速箱每次故障的平均成本最高,一次大型更换平均花费€230,000。4
变速箱组件的可靠性相对较差,因此需要重点对齿轮、轴承和轴实施状态监控。除了变速箱之外,转子叶片和发电机是WT系统中 故障率最高的组件。5,6 目前商用风轮机状态监控系统有很多,其中大部分使用振动传感器来实施变速箱分析。目前已经有一些 商用的转子叶片监控系统 7 ,但这个领域尚待继续研究。大量相关资料支持在风轮机中使用振动监控系统,包括详细调查和分 析各种系统的优势。8 但很少有资料会介绍风轮机应用对振动传感器的要求。本文从系统角度,提供关于风轮机组件、故障统计、 常见故障类型和故障数据收集方法等的见解。本文从WT组件上的常见故障入手,讨论振动传感器要求,例如带宽、测量范围和噪声密度等。
系统组件、故障和传感器要求
图1和图2显示风轮机系统的主要组件,并提供风轮机变速箱的详细结构。下面几节将重点介绍变速箱、叶片和塔架对状态监 控的要求,重点介绍振动传感器。对于其他系统,例如偏航驱动、机械刹车和发电机,我们一般不使用振动传感器进行监控,而是监控扭矩、温度、润滑油参数和电信号。
图1. 风轮机系统组件
图2. 变速箱的结构
变速箱
风轮机变速箱将机械能从低转速的转子轮毂传输到高速发电机。同时,WT变速箱承受着不同风速带来的交替载荷,以及频 繁制动导致的瞬变脉冲。变速箱包括一个低速转子轴和主轴承,在风力驱动转子叶片时以0 rpm至20 rpm(不到0.3 Hz)的转速运 行。要捕获不断增加的振动信号,需要振动传感器使用直流电运行。行业认证指南特别指出,振动传感器的性能需要达到0.1 Hz。9 变速箱的高速轴通常以3200 rpm (53 Hz)的转速运行。为了提供足够带宽来捕捉轴承和齿轮故障的谐波,推荐低速和高速轴振动传感器的性能达到10 kHz及以上。9 这是因为无论转速多大,轴承谐振一般都在几千赫范围内。10
到目前为止,轴承故障是引发变速箱故障的最大原因。一些研究表明,轴承故障是引发灾难性齿轮故障的根本原因。 11 当高速轴上的后轴承失效时,高速轴发生倾斜,造成中间(中部)轴齿轮的传输不均。在这种情况下,齿轮的接触齿极易发生故障,如图3所示。
图3. 中轴齿轮断齿
轴承润滑(油)不足是导致主轴轴承故障的主要原因。可用的解决方案(例如SKF NoWear)包括特殊轴承涂层, 12 可将缺油运行时间提高6倍以上。
即使采用特殊的轴承涂层和其他变速箱改进方法,我们仍然需要使用合适的振动传感器来监控变速箱的主要轴承和高速轴承。振 动传感器的本底噪声需要足够低,以便能够检测到早期振动幅度(g范围)较低的轴承故障。较老的MEMS技术,例如ADXL001 ,其本底噪声为4 mg/√Hz,足以捕捉轴承外环的故障。13 图4显示,外环故障先出现约0.055 g的频率峰值,且轴承表现良好,从噪声密度角度来看,本底噪声低于2 mg/√Hz。参考的13数据采集系统的过程增益导致噪声大幅降低,因此测量得出2 mg/√Hz本底噪声。只有在DAQ 系统实现了足够的过程增益,且噪声为随机的情况下,才适合使用本底噪声为4 mg/√Hz的传感器。一般情况下,最好使用本底噪声 为100 µg/√Hz至200 µg/√Hz的振动传感器,而不是基于过程增益,后者只有在噪声为随机且不相关的情况下适用。
本底噪声在100 µg/√Hz至200 µg/√Hz之间的传感器在捕捉正常的轴承运行状况方面表现出色,在捕捉mg/√Hz范围内的早期故障时则 表现卓异。事实上,使用本底噪声为100 µg/√Hz的MEMS传感器甚至能够更早检测出轴承故障。
图4. 使用MEMS加速度计ADXL001测量轴承外环的故障
在不到0.1 g时,显示初始轴承损坏,而在达到1 g时,通常表示深度 轴承损坏,这会触发维护。 14 图5显示,当振动幅值超过6 g时,需维护变速箱和更换轴承。如前所述,轴承故障频率会在更高频率下 发生。在更高频率下实施测量需要使用g范围规格更大的传感器。这是因为测得的加速度重力值与频率成比例。因此,与在低频率下 相比,在更高频率下,相同的少量故障位移会导致更高的重力范围。一般指定在50 g至200 g时使用测量范围高达10 kHz、更高带宽的传感 器,尤其指定适用于风轮机应用.由于结构冲击或突然的机械断裂,振动传感器也需要涵盖冲击载荷工况。因此,一般将典型的商用振动监控系统的满量程定为至少为50 g至100 g。
图5. 振动幅度为6 g时的轴承位移
对于风轮机主轴承,要求至少使用一个单轴振动传感器,推荐使用两个,并在轴向和径向上测量。 9 轴承环上的轴向开裂可能使轴 承寿命缩短至仅一到两年。15
由于变速箱本身很复杂,如图2所示,所以建议使用至少6个振动传感器来实施状态监控。 9 在选择传感器的数量和位置时,应确保能够可靠测量所有齿轮啮合和缺陷/转动频率。监控变速箱的 低速级时,需要使用一个单轴传感器,放置在尽可能靠近环形齿轮的位置。监控变速箱的中间和高速级时,需要在中心齿轮、 中间轴和高速轴位置使用一个单轴传感器。高速和中速轴承内环的轴向开裂已成为影响风轮机变速箱寿命的主要原因。15
对于变速箱监控,未来要改善的状态监控领域包括无线振动监控系统的采用,但持续研究才能持续为这些解决方案提供支持。8
转子叶片
风轮机的转子叶片和轮毂组件在低速下捕捉风并传输扭矩。导致叶片故障的主要原因包括极端风荷载、结冰或雷电等环境 影响,以及不平衡。这些因素导致断裂和边缘开裂,以及径节系统故障。目前只有少量商用振动监控系统,可以分布在叶片外部和内部。 8 已经使用MEMS振动传感器在叶片上开展大量学术研究,比如Cooperman和Martinez的工作, 16 其中还包括陀螺仪和磁力仪。我们使用这些传感器的联合输出来确定风轮机叶片的方向和变形。相比之下,很少有商用振动监控系 Weidmuller BLADEcontrol®,17 ,它使用每个转子叶片内的振动传感器来测量每个叶片的自动振动行为的变化。BL ADEcontrol系统主要用于检测引起涡轮过度振动的转子叶片上的极端结冰状况。
一般来说,大型风轮机叶片(即直径40米以上的叶片)的首级固有频率在0.5 Hz至15 Hz之间。 18 对涡轮叶片 18 上的无线振动监控系统的可行性研究显示,因振动激励导致的叶片频率响应远高于基频。其他研究 19 表明,由叶片边缘变形引起的叶片频率与叶片扭转变形引起的叶片频率之间有显著差异。叶片边缘变形的固有频率在0.5 Hz至30 Hz之间,叶片扭转变形的固有频率高达700 Hz。用振动传感器测量基频以外的频率需要更大的带宽。DNVGL状态监控规范认证9建议对转子叶片使用振动传感器,它能够测量0.1 Hz至≥10 kHz的频率范围,其中一个传感器放在转子轴上,另一个放在横向方向上。振动传感器在转子叶片上可以实现高频率测量范围,它也必须具备至少50 g的大幅度测量范围,与变速箱轴承的要求类似。
带风机的塔
风轮机塔为风机外壳和转子叶片总成提供结构支撑。塔身会遭受冲击损坏,导致塔出现倾斜。塔倾斜之后,叶片与风向之间无法保持最佳角度。测量倾斜度需要使用操作功率可以低至0 Hz的传感器,如此在零风条件下,也可以检测到倾斜。
基座部分的结构破坏会导致塔摇晃。塔摇晃监控集成在一些涡轮状态监控系统中,与变速箱振动监控相比,可以商用的选项并不多。 8 Scaime状态监控系统 20 使用加速度计、位移传感器、应变传感器和温度传感器来监控叶片、塔和基座的状况。根据DNVGL规范,Scaime加速度计的满量程范围为±2 g, 20 监控频率范围为0.1 Hz至100 Hz。 9如前所述,在静态条件下(无风力),当塔架结构发生故障导致倾斜时,频率的最低限值降低至0 Hz。要实施倾斜测量,需要使用具有良好的直流稳定性能的传感器。MEMS传感器,例如ADXL355采 用气密封装,可以实现行业领先的0 g失调稳定性。
研究 21 证实,最小±2 g范围的振动传感器足以对塔实施监控。在正常运行模式下,25 mps的最大风速可产生小于1 g的加速度重力电平。事实上,在"基于现场测量和有限元分析的风轮机塔基础系统可识别应力状态" 21 研究中,额定风速为2 mps到25 mps,风轮机会在风速为25 mps时关断(停用)。
总结
表1基于风轮机应用需求提供振动传感器的需求摘要。DNVGL状态监控规范认证中给出了传感器的数量、测量方向和频率范围。 9 如 前所述,0 Hz性能对于监控塔架的结构问题非常重要。表1还根据本文提供的现场研究和测量总结了合适的幅度范围和噪声密度。
故障数据收集方法
所有大规模实体WT都有标准的监控控制和数据采集(SCADA)系统,主要用于实施参数监控。监控参数的示例包括变速箱轴承温度和润滑、主动功率输出和相电流。一些参考资料 6 讨论使用SCADA数据进行风轮机状态监控,以检测趋势。英国杜伦大学的一项调查 7 列出了多达10个商用状态监控系统,这些系统可以适配并与使用标准协议的现有SCADA系统完全集成。GE Energy ADAPT.Wind就是这样一个示例。 22 对未来技术趋势的广泛调查 7 显示,在风轮机上安装振动监控系统是一个明显的倾向。
用于风轮机状态监控的合适的振动传感器
在等于或低于0.3 Hz时,压电振动技术难以或无法捕获振动特征。这意味着无法对低速WT部件,例如转子叶片、主轴承、低速变速箱,塔等实施正常监控。基于MEMS的传感器的性能可以低至0 Hz,可以捕捉所有主要风轮机组件中的关键故障。这为客户提供了用 于WT的单一振动传感器解决方案,仅使用MEMS来测量从0 Hz到高达10 kHz及以上的故障。
除了能够捕捉所有关键故障之外,MEMS还具有以下优点:
宽重力测量范围和超低的µg/√Hz噪声密度,可以轻松满足表1中给出的要求。
MEMS具有内置自测(BIST)功能。系统操作员无需访问WT来测试/确保传感器正确运行,可以节约成本。相比之下,压电技术不具备BIST功能。
与基于压电的解决方案相比,MEMS接口在数据接口和电源供应方面更加灵活。在将高阻抗压电传感器输出解译到长电缆 时,可用的选项有限。最常采用的是双线IEPE接口,使用第二根接地线通过共享电源/数据线为压电传感器供电。IEPE使用与压电解决方案匹配的放大器来提供低阻抗电缆驱动解决方案。IEPE接口解决方案可以使用MEMS传感器,但MEMS传感器也能与使用现场总线(RS-485、CAN)或基于以太网的网络操作的现有系统轻松集成。这是因为MEMS传感器可以提供模拟输出或数字输出(SPI、IC),并轻松传输至其他协议。
环保性能:WT通常在-40˚C到+55˚C的温度下运行,而MEMS器件很容易满足这一要求。
与基于压电的传感器相比,MEMS在长时间使用时具有更好的灵敏度和线性度。ADI加速度计的非线性程度很低,通常可以 忽略不计。例如, ADXL1001 MEMS加速度计在满量程范围内具有小于0.025%的典型非线性规格。相比之下,对基于压电传感器的标准化测量的学术研究显示,非线性度为0.5%或更低。23
如今可用的基于MEMS的振动传感器和解决方案
传感器
使用 ADXL1002、 ADXL1003、 ADXL1005、 和 ADcmXL3021 MEMS传感器(如图2 所示)可以轻松满足风轮机应用的振动监控对带宽、范围和噪 声密度的要求。 ADXL355 和 ADXL357 也适合用于实施风轮机塔监控, 具有较低的带宽和范围测量性能。ADXL355/ADXL357具有良好的直流稳定性,这对于测量风轮机塔的倾斜度非常重要。ADXL355/ ADXL357的气密封装保证了良好的长期稳定性。在10年使用寿命中,ADXL355的重复性在±3.5 mg以内,为倾斜测量提供了高度精准的 传感器。
风轮机状态监控解决方案
无线
ADI提供一套完整的验证参考设计、评估系统和即插即用机器健康传感器模块,以加速客户的设计进度。图6显示ADI无线振动监控评估平台。 该系统解决方案整合了机械附件、硬件、固件和PC软件,可以快速部署和评估单轴振动监测解决方案。该模块可以通过磁性方式或螺柱直接连接到电机或固定装置。作为基于状态的监控(CbM)系统的一部分,它也可以与同一无线Mesh网络上的其他模块组合使用,以提供具有多个传感器节点的范围更广的图像。
图6. 无线振动监控评估平台
CbM硬件信号链包含一个安装在模块底座上的单轴ADXL1002加 速度计。将ADXL1002的输出读入 ADuCM4050低功耗微控制器,并在此对其进行缓冲,转换至频域并传输至SmartMesh® IP终端。将ADXL1002的输出从SmartMesh芯片无线传输到SmartMesh IP管理器。管理器连接到PC,可以进行可视化处理和数据保存。数据显示为原始时域数据和FFT数据。还提供了有关时间汇总数据的其他摘要统计信息。提供了PC端GUI的完整Python®代码以及部署于模块上的C语言固件,以便客户修改。
有线
ADI的 Pioneer 1有线CbM评估平台 为 ADcmXL3021 三轴振动传感器提 供工业有线链接解决方案。CbM硬件信号链由三轴ADcmXL3021加速度计和Hirose flex PCB连接器组成。带有SPI和中断输出的ADcmXL3021 Hirose连接器与接口PCB相连,通过数米长的电缆将发送至RS-485物理层的SPI转化发送至远程主控制器板。SPI到RS-485 物理层的转换可以使用隔离或非隔离的接口PCB实现,其中包括 iCoupler® 隔离 (ADuM5401/ADuM110N)和RS-485/RS-422收发器(ADM4168E/ADM3066E)。该解决方案通过一根标准电缆将电能和数据结合在一起,从而降低了远程MEMS传感器节点的电缆和连接器成本。专用软件GUI可以简单配置ADcmXL3021器件,并在长电缆上捕捉振动数据。GUI软件将数据可视化显示为原始时间域或FFT波形。
图7. 有线振动监控评估平台
结论
本文证明基于MEMS的传感器可以测量风轮机的关键系统中的所有关键故障。MEMS传感器的带宽、测量范围、直流稳定性和噪声 密度均妥善指定,在风轮机应用中具有出色性能。
MEMS内置自测(BIST)、灵活的模拟/数字接口,以及长时间使用过程中的出色的灵敏度/线性度,这是MEMS传感器成为最佳风轮机 状态监控解决方案的另外一些原因。基于振动检测早期故障的维护系统是一项现代技术,可以防止整个风轮机出现成本高昂的停机。
转自EETOP
工业振动传感器选型的九个因素
laoguo 发表了文章 • 0 个评论 • 1187 次浏览 • 2020-06-10 13:50
工业振动传感器选型1:你想要测量什么?
这似乎是显而易见的,但请三思。什么是你真正要测量的?换句话说,你想做什么?你希望得到什么?你打算怎么处理数据?加速度传感器可以监测振动,提供原始振动数据,而振动变送器提供均方根(RMS)值。分析原始振动数据是有用的,因为它包含了所有振动信号的信息,真实的峰值振幅和振动频率。因为RMS总值或峰值是连续4-20 mA信号,在如PLC,DCS,SCADA系统和PI控制系统中非常有用。一些应用程序同时使用两种信号。通过确定应用程序所需的各种信号,可以大大缩小搜索范围。另外,你测量振动是用加速度还是速度或位移?你有没有考虑一些工业传感器可以同时输出振动和温度?最后,一些现场应用,如立式泵,最好监测一个以上的轴振动。您的现场应用是否需要单轴,双轴或三轴测量?
工业振动传感器选型2:振幅有多大?
被测振动的最大振幅或范围,决定使用哪种范围的传感器。典型的加速度传感器灵敏度100 mV/g,标准应用(50g范围)和500 mV/ g的低频率或低幅值的应用(10g范围)。 一般工业应用的4-20 mA变送器通常使用0-1 in/s或0-2in/s的范围。
工业振动传感器选型3:振动频率是多少?
对于不同的激励频率,物理结构和动力系统的反应不同。振动传感器是没有什么不同。压电材料的性质,就像高通滤波器,因此,即使是最好的压电式传感器,也有约0.2Hz的低频率的限制。传感器作为一个单自由度的动态系统,具有自然共振频率。信号在自然共振频率时被大大放大,导致灵敏度显着的变化,很可能超量程。大多数工业加速度计有单或双RC滤波器抵消激发的共振频率。选择传感器可用的频率范围,其范围包括你感兴趣的频率,这是很关键的。
工业振动传感器选型4:环境温度是多少?
对于ICP加速度传感器和4-20mA变送器,极高的环境温度对内部电子构成威胁。充电模式的加速传感器可以在非常高的环境温度下使用,其没有内置电子,而是使用远程电荷放大器。充电模式加速传感器配有一体硬线电缆,可以应用在温度超过260°℃环境下,例如燃气轮机振动监测等。
工业振动传感器选型5: 是否会浸没在液体中?
配有一体聚氨酯电缆的工业加速度传感器可以浸入液体永久安装。对于高压的应用,最好传感器进行一小时的压力测试。完全淹没的应用需要一体电缆。在喷洒而非完全淹没的场合上一体电缆也是需求的,如机床切削液。
工业振动传感器选型6: 是否会暴露在潜在有害的化学物质或碎片中?
工业加速度传感器可以使用耐腐蚀和耐化学腐蚀的不锈钢进行构造。在有害化学物质的环境中,传感器考虑使用聚四氟乙烯耐腐蚀的连接电缆。强烈建议检查任何可疑化学物质的化学兼容性图表。对于能接触到切屑的环境,一体铠装电缆能提供良好的保护。
工业振动传感器选型7:你是否需要顶出,偏出,小巧的链接?
最终,传感器都需要在设备的可用空间伤安装。传感器的形状对其性能影响不大,但需考虑现场安全安装和维修操作。配有锁紧螺母设计的小巧加速度传感器,能够在任何方向固定,但配有一体电缆时,很方便。
工业振动传感器选型8:你是使用高精度的还是低成本的传感器?
低成本和高精度加速度传感器有两个主要区别。首先,精度单位通常完整标定,这是指在可用频率范围内进行灵敏度响应测量绘图。低成本加速度传感器是单点标定,只在一个频率进行灵敏度测量。第二,高精度加速度传感器在某些规格有严格的公差如灵敏度和频率范围。
例如,一个高精度的加速度传感器标称灵敏度为100 mV/ g±5%(95 mV/g至105mV/g),而一个低成本加速度传感器标称灵敏度100门V/g± 10%(90 mV/g至110mV/g)。客户可以在数据采集系统设置为传感器的标定灵敏度,这样低成本的传感器也能提供准确,可重复的数据。至于频率,高精度加速度传感器通常最大偏差是5%,而低成本的传感器,可以提供3 dB的频率范围。尽管如此,一个低成本的传感器可以提供优异的频率响应。
工业振动传感器选型9: 你需求特殊的认证码?
得到CSA和ATEX认证的加速度传感器和4-20 mA变送器都可以在危险区域使用。比较传感器的认证,以确保它符合您的需求。
九个问题的答案,可以大大缩小您的搜索,以寻找应用的最佳解决方案。牢记,组合在一起的答案可能是相互排斥的,也就是说,解决方案满足每个标准不存在的。例如,在危险区域使用的特定模式可能没有的ATEX认证。此外,专门的现场应用可能有其他方面的考虑。